taratrankennedy commited on
Commit
8caed8a
·
verified ·
1 Parent(s): a6ecfee

Refine generate_response

Browse files
Files changed (1) hide show
  1. app.py +7 -14
app.py CHANGED
@@ -11,7 +11,8 @@ retrieval_model_name = 'all-MiniLM-L6-v2' # Using a pre-trained model from Hugg
11
 
12
  openai.api_key = os.environ["OPENAI_API_KEY"]
13
 
14
- system_message = "You are an assistant specialized in distilling the user input into a to-do list of specific items. You will then output those items in a numbered list."
 
15
 
16
  # Initial system message to set the behavior of the assistant
17
  messages = [{"role": "system", "content": system_message}]
@@ -63,17 +64,15 @@ def find_relevant_segment(user_query, segments):
63
  print(f"Error in finding relevant segment: {e}")
64
  return ""
65
 
66
- def generate_response(user_query, relevant_segment):
67
  """
68
  Generate a response emphasizing the bot's capability in providing scheduling information.
69
  """
70
  try:
71
- # Use relevant segment in the message to the model
72
- user_message = f"Here's a to do list based on what you said: {relevant_segment}"
73
-
74
  # Append user's message to messages list
75
- messages.append({"role": "user", "content": user_message})
76
 
 
77
  response = openai.ChatCompletion.create(
78
  model="gpt-4",
79
  messages=messages,
@@ -103,13 +102,8 @@ def query_model(question):
103
  if question == "":
104
  return "Hello! I am your time manager Timify! Please enter what you need to do today."
105
 
106
- # Find the most relevant example segment
107
- relevant_segment = find_relevant_segment(question, segments)
108
- if not relevant_segment:
109
- return "Could not find specific information. Please refine your requirements."
110
-
111
- # Generate a response using the relevant example
112
- response = generate_response(question, relevant_segment)
113
  return response
114
 
115
  # Define the welcome message and specific topics the chatbot can provide information about
@@ -140,6 +134,5 @@ with gr.Blocks(theme='freddyaboulton/test-blue') as demo:
140
  submit_button = gr.Button("Submit")
141
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
142
 
143
-
144
  # Launch the Gradio app to allow user interaction
145
  demo.launch(share=True)
 
11
 
12
  openai.api_key = os.environ["OPENAI_API_KEY"]
13
 
14
+ # Update the system message to provide more guidance on generating a to-do list
15
+ system_message = "You are an assistant specialized in creating detailed to-do lists based on user input. Parse the input for tasks and generate a comprehensive list of actionable items. Output the items in a numbered list."
16
 
17
  # Initial system message to set the behavior of the assistant
18
  messages = [{"role": "system", "content": system_message}]
 
64
  print(f"Error in finding relevant segment: {e}")
65
  return ""
66
 
67
+ def generate_response(user_query):
68
  """
69
  Generate a response emphasizing the bot's capability in providing scheduling information.
70
  """
71
  try:
 
 
 
72
  # Append user's message to messages list
73
+ messages.append({"role": "user", "content": user_query})
74
 
75
+ # Call OpenAI API to generate a to-do list based on the user query
76
  response = openai.ChatCompletion.create(
77
  model="gpt-4",
78
  messages=messages,
 
102
  if question == "":
103
  return "Hello! I am your time manager Timify! Please enter what you need to do today."
104
 
105
+ # Generate a response using the user query directly
106
+ response = generate_response(question)
 
 
 
 
 
107
  return response
108
 
109
  # Define the welcome message and specific topics the chatbot can provide information about
 
134
  submit_button = gr.Button("Submit")
135
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
136
 
 
137
  # Launch the Gradio app to allow user interaction
138
  demo.launch(share=True)