Update djezzy.py
Browse files
djezzy.py
CHANGED
@@ -16,12 +16,25 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
16 |
import json
|
17 |
import pickle
|
18 |
import numpy as np
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
22 |
|
23 |
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
|
24 |
-
|
25 |
def load_data(text_filename='docs_text.json', embeddings_filename='docs_embeddings.json'):
|
26 |
|
27 |
|
|
|
16 |
import json
|
17 |
import pickle
|
18 |
import numpy as np
|
19 |
+
import shutil
|
20 |
+
import tempfile
|
21 |
+
|
22 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
23 |
+
# Chemins des fichiers cibles dans le répertoire temporaire
|
24 |
+
index_target = os.path.join(temp_dir, 'index.txt')
|
25 |
+
hh_target = os.path.join(temp_dir, 'hh.txt')
|
26 |
+
|
27 |
+
# Copier les fichiers dans le répertoire temporaire
|
28 |
+
shutil.copy(index_source, index_target)
|
29 |
+
shutil.copy(hh_source, hh_target)
|
30 |
+
|
31 |
+
# Charger la base de données FAISS à partir du répertoire temporaire
|
32 |
+
vector_db = FAISS.load_local(temp_dir, embedding_llm, allow_dangerous_deserialization=True)
|
33 |
|
34 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
35 |
|
36 |
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
|
37 |
+
|
38 |
def load_data(text_filename='docs_text.json', embeddings_filename='docs_embeddings.json'):
|
39 |
|
40 |
|