tarrasyed19472007 commited on
Commit
3c5d220
·
verified ·
1 Parent(s): 42feee4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -2,8 +2,6 @@ import streamlit as st
2
  import fitz # PyMuPDF
3
  from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
4
  import numpy as np
5
- import faiss
6
- import torch
7
 
8
  # Load the RAG model components
9
  tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
@@ -24,7 +22,7 @@ def answer_question(question, pdf_text):
24
  inputs = tokenizer(question, return_tensors="pt")
25
 
26
  # Retrieve documents based on the PDF text
27
- doc_embeds = retriever.get_document_embeddings(pdf_text)
28
  retriever.set_retriever_doc_embeddings(doc_embeds)
29
 
30
  # Get the top k documents for the question
@@ -63,4 +61,3 @@ if pdf_file is not None:
63
 
64
 
65
 
66
-
 
2
  import fitz # PyMuPDF
3
  from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
4
  import numpy as np
 
 
5
 
6
  # Load the RAG model components
7
  tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
 
22
  inputs = tokenizer(question, return_tensors="pt")
23
 
24
  # Retrieve documents based on the PDF text
25
+ doc_embeds = retriever.get_document_embeddings([pdf_text]) # Wrap pdf_text in a list
26
  retriever.set_retriever_doc_embeddings(doc_embeds)
27
 
28
  # Get the top k documents for the question
 
61
 
62
 
63