Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import streamlit as st
|
|
2 |
import fitz # PyMuPDF
|
3 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
4 |
import numpy as np
|
5 |
-
import faiss
|
6 |
-
import torch
|
7 |
|
8 |
# Load the RAG model components
|
9 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
@@ -24,7 +22,7 @@ def answer_question(question, pdf_text):
|
|
24 |
inputs = tokenizer(question, return_tensors="pt")
|
25 |
|
26 |
# Retrieve documents based on the PDF text
|
27 |
-
doc_embeds = retriever.get_document_embeddings(pdf_text)
|
28 |
retriever.set_retriever_doc_embeddings(doc_embeds)
|
29 |
|
30 |
# Get the top k documents for the question
|
@@ -63,4 +61,3 @@ if pdf_file is not None:
|
|
63 |
|
64 |
|
65 |
|
66 |
-
|
|
|
2 |
import fitz # PyMuPDF
|
3 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
4 |
import numpy as np
|
|
|
|
|
5 |
|
6 |
# Load the RAG model components
|
7 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
|
|
22 |
inputs = tokenizer(question, return_tensors="pt")
|
23 |
|
24 |
# Retrieve documents based on the PDF text
|
25 |
+
doc_embeds = retriever.get_document_embeddings([pdf_text]) # Wrap pdf_text in a list
|
26 |
retriever.set_retriever_doc_embeddings(doc_embeds)
|
27 |
|
28 |
# Get the top k documents for the question
|
|
|
61 |
|
62 |
|
63 |
|
|