sileod commited on
Commit
2adecad
·
verified ·
1 Parent(s): bf8f008

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -98
app.py CHANGED
@@ -1,112 +1,86 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Initialize the classifier
5
- classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
 
6
 
7
- def zeroShotClassification(text_input, candidate_labels):
8
- # Clean and process the labels
9
- labels = [label.strip() for label in candidate_labels.split(',')]
 
 
 
 
 
 
10
 
11
- # Get predictions
12
- prediction = classifier(text_input, labels)
 
 
 
 
 
 
 
13
 
14
- # For Label component: Return raw scores (not percentage strings)
15
- results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])}
 
 
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- return results, ''
 
 
 
 
 
 
 
19
 
20
- # Create the interface
21
- demo = gr.Interface(
22
- fn=zeroShotClassification,
23
- inputs=[
24
- gr.Textbox(
25
- label="✍️ Input Text",
26
- placeholder="Enter the text you want to classify...",
27
- lines=3,
28
- elem_classes=["example-text"]
29
- ),
30
- gr.Textbox(
31
- label="🏷️ Category Labels",
32
- placeholder="Enter comma-separated categories (e.g., happy, sad, excited, confused)",
33
- lines=2,
34
- elem_classes=["example-text"]
35
  )
36
- ],
37
- outputs=[
38
- gr.Label(label="📊 Classification Results"),
39
- gr.Markdown(label="📈 Detailed Analysis", elem_classes=["markdown-text"])
40
- ],
41
- title="🤖 Zero-Shot Text Classification with ModernBERT",
42
- description="""
43
- Classify any text into arbirary categories or perform natural language inference with ModernBERT
44
-
45
- **How to use:**
46
- 1. Enter your text in the first box
47
- 2. Add comma-separated category labels in the second box
48
- 3. Click submit to see how your text matches each category
49
 
50
- Try the examples below or create your own classifications!
51
- """,
52
- examples=[
53
- ["One day I will see the world", "travel, adventure, dreams, future"],
54
- ["The movie had amazing special effects but a weak plot", "entertainment, technology, criticism, story"],
55
- ["This new phone has an amazing camera and great battery life", "technology, photography, consumer, review"],
56
- ["Mix flour, sugar, and eggs until well combined", "cooking, baking, instructions, food"],
57
- ["Scientists discovered a new species of butterfly in the Amazon", "science, nature, discovery, environment"],
58
- ["The team scored in the final minute to win the championship", "sports, victory, competition, excitement"],
59
- ["The painting uses vibrant colors to express deep emotions", "art, emotion, creativity, analysis"]
60
- ],
61
- cache_examples=False,
62
- css="""
63
- footer {display:none !important}
64
- .output-markdown{display:none !important}
65
- .gradio-container {
66
- font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
67
- max-width: 1200px !important;
68
- }
69
- .gr-button-primary {
70
- background: linear-gradient(90deg, #11142D, #253885) !important;
71
- border: none !important;
72
- color: white !important;
73
- border-radius: 12px !important;
74
- transition: all 0.3s ease !important;
75
- }
76
- .gr-button-primary:hover {
77
- transform: translateY(-2px) !important;
78
- box-shadow: 0 4px 12px rgba(17, 20, 45, 0.3) !important;
79
- background: linear-gradient(90deg, #253885, #4285F4) !important;
80
- }
81
- .gr-input, .gr-textarea {
82
- border-radius: 8px !important;
83
- border: 2px solid #E2E8F0 !important;
84
- padding: 12px !important;
85
- font-size: 16px !important;
86
- }
87
- .gr-input:focus, .gr-textarea:focus {
88
- border-color: #253885 !important;
89
- box-shadow: 0 0 0 3px rgba(37, 56, 133, 0.2) !important;
90
- }
91
- .gr-panel {
92
- border-radius: 16px !important;
93
- box-shadow: 0 4px 15px -1px rgba(0, 0, 0, 0.1) !important;
94
- background: white !important;
95
- }
96
- .gr-box {
97
- border-radius: 12px !important;
98
- background: white !important;
99
- }
100
- .markdown-text {
101
- font-size: 16px !important;
102
- line-height: 1.6 !important;
103
- }
104
- .example-text {
105
- font-family: 'Inter', sans-serif !important;
106
- color: #11142D !important;
107
- }
108
- """
109
- )
110
 
111
  # Launch the app
112
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # Initialize the classifiers
5
+ zero_shot_classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
6
+ nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-base-nli")
7
 
8
+ def process_input(text_input, labels_or_premise, mode):
9
+ if mode == "Zero-Shot Classification":
10
+ # Clean and process the labels
11
+ labels = [label.strip() for label in labels_or_premise.split(',')]
12
+
13
+ # Get predictions
14
+ prediction = zero_shot_classifier(text_input, labels)
15
+ results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])}
16
+ return results, ''
17
 
18
+ else: # NLI mode
19
+ # Process as premise-hypothesis pair
20
+ prediction = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}])
21
+ results = {pred['label']: pred['score'] for pred in prediction}
22
+ return results, ''
23
+
24
+ # Create the interface
25
+ with gr.Blocks() as demo:
26
+ gr.Markdown("# 🤖 ModernBERT Text Analysis")
27
 
28
+ mode = gr.Radio(
29
+ ["Zero-Shot Classification", "Natural Language Inference"],
30
+ label="Select Mode",
31
+ value="Zero-Shot Classification"
32
+ )
33
 
34
+ with gr.Column():
35
+ text_input = gr.Textbox(
36
+ label="✍️ Input Text",
37
+ placeholder="Enter your text...",
38
+ lines=3
39
+ )
40
+
41
+ labels_or_premise = gr.Textbox(
42
+ label="🏷️ Categories / Premise",
43
+ placeholder="Enter comma-separated categories or premise text...",
44
+ lines=2
45
+ )
46
+
47
+ submit_btn = gr.Button("Submit")
48
+
49
+ outputs = [
50
+ gr.Label(label="📊 Results"),
51
+ gr.Markdown(label="📈 Analysis", visible=False)
52
+ ]
53
 
54
+ # Different examples for each mode
55
+ zero_shot_examples = [
56
+ ["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
57
+ ["The sun is very bright today", "weather, astronomy, complaints, poetry"],
58
+ ["I love playing video games", "entertainment, sports, education, business"],
59
+ ["The car won't start", "transportation, art, cooking, literature"],
60
+ ["She wrote a beautiful poem", "creativity, finance, exercise, technology"]
61
+ ]
62
 
63
+ nli_examples = [
64
+ ["A man is sleeping on a couch", "The man is awake"],
65
+ ["The restaurant is full of people", "The place is empty"],
66
+ ["The child is playing with toys", "The kid is having fun"],
67
+ ["It's raining outside", "The weather is wet"],
68
+ ["The dog is barking at the mailman", "There is a cat"]
69
+ ]
70
+
71
+ def update_examples(mode_value):
72
+ return gr.Examples(
73
+ zero_shot_examples if mode_value == "Zero-Shot Classification" else nli_examples,
74
+ inputs=[text_input, labels_or_premise]
 
 
 
75
  )
76
+
77
+ mode.change(fn=update_examples, inputs=[mode], outputs=gr.Examples())
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ submit_btn.click(
80
+ fn=process_input,
81
+ inputs=[text_input, labels_or_premise, mode],
82
+ outputs=outputs
83
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
  # Launch the app
86
  if __name__ == "__main__":