Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import re
|
4 |
|
|
|
5 |
def sent_tokenize(text):
|
6 |
-
# Regular expression to split sentences
|
7 |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|!)(\s|$)')
|
8 |
sentences = sentence_endings.split(text)
|
9 |
return [s.strip() for s in sentences if s.strip()]
|
@@ -34,6 +34,70 @@ long_context_examples = [
|
|
34 |
"The cafe is experiencing a slow, quiet morning"]
|
35 |
]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def process_input(text_input, labels_or_premise, mode):
|
38 |
if mode == "Zero-Shot Classification":
|
39 |
labels = [label.strip() for label in labels_or_premise.split(',')]
|
@@ -48,6 +112,7 @@ def process_input(text_input, labels_or_premise, mode):
|
|
48 |
# Global prediction
|
49 |
global_pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
|
50 |
global_results = {pred['label']: pred['score'] for pred in global_pred}
|
|
|
51 |
|
52 |
# Sentence-level analysis
|
53 |
sentences = sent_tokenize(text_input)
|
@@ -63,50 +128,10 @@ def process_input(text_input, labels_or_premise, mode):
|
|
63 |
'scores': sent_scores
|
64 |
})
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
max_global_label = max(global_results.items(), key=lambda x: x[1])[0]
|
69 |
-
analysis_md += f"Overall prediction: **{max_global_label}**\n\n"
|
70 |
-
analysis_md += "## Sentence-Level Analysis\n"
|
71 |
-
|
72 |
-
for i, result in enumerate(sentence_results, 1):
|
73 |
-
analysis_md += f"\n### Sentence {i}\n"
|
74 |
-
analysis_md += f"*{result['sentence']}*\n"
|
75 |
-
analysis_md += f"Prediction: **{result['prediction']}**\n"
|
76 |
-
scores_str = ", ".join([f"{label}: {score:.2f}" for label, score in result['scores'].items()])
|
77 |
-
analysis_md += f"Scores: {scores_str}\n"
|
78 |
-
|
79 |
-
return global_results, analysis_md
|
80 |
-
|
81 |
-
def update_interface(mode):
|
82 |
-
if mode == "Zero-Shot Classification":
|
83 |
-
return (
|
84 |
-
gr.update(
|
85 |
-
label="π·οΈ Categories",
|
86 |
-
placeholder="Enter comma-separated categories...",
|
87 |
-
value=zero_shot_examples[0][1]
|
88 |
-
),
|
89 |
-
gr.update(value=zero_shot_examples[0][0])
|
90 |
-
)
|
91 |
-
elif mode == "Natural Language Inference":
|
92 |
-
return (
|
93 |
-
gr.update(
|
94 |
-
label="π Hypothesis",
|
95 |
-
placeholder="Enter a hypothesis to compare with the premise...",
|
96 |
-
value=nli_examples[0][1]
|
97 |
-
),
|
98 |
-
gr.update(value=nli_examples[0][0])
|
99 |
-
)
|
100 |
-
else: # Long Context NLI
|
101 |
-
return (
|
102 |
-
gr.update(
|
103 |
-
label="π Global Hypothesis",
|
104 |
-
placeholder="Enter a hypothesis to test against the full context...",
|
105 |
-
value=long_context_examples[0][1]
|
106 |
-
),
|
107 |
-
gr.update(value=long_context_examples[0][0])
|
108 |
-
)
|
109 |
|
|
|
110 |
with gr.Blocks() as demo:
|
111 |
gr.Markdown("""
|
112 |
# tasksource/ModernBERT-nli demonstration
|
@@ -142,7 +167,7 @@ with gr.Blocks() as demo:
|
|
142 |
|
143 |
outputs = [
|
144 |
gr.Label(label="π Results"),
|
145 |
-
gr.
|
146 |
]
|
147 |
|
148 |
with gr.Column(variant="panel") as zero_shot_examples_panel:
|
|
|
2 |
from transformers import pipeline
|
3 |
import re
|
4 |
|
5 |
+
# Custom sentence tokenizer
|
6 |
def sent_tokenize(text):
|
|
|
7 |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|!)(\s|$)')
|
8 |
sentences = sentence_endings.split(text)
|
9 |
return [s.strip() for s in sentences if s.strip()]
|
|
|
34 |
"The cafe is experiencing a slow, quiet morning"]
|
35 |
]
|
36 |
|
37 |
+
def get_label_color(label):
|
38 |
+
"""Return color based on NLI label."""
|
39 |
+
colors = {
|
40 |
+
'ENTAILMENT': '#90EE90', # Light green
|
41 |
+
'NEUTRAL': '#FFE5B4', # Peach
|
42 |
+
'CONTRADICTION': '#FFB6C1' # Light pink
|
43 |
+
}
|
44 |
+
return colors.get(label, '#FFFFFF')
|
45 |
+
|
46 |
+
def create_analysis_html(sentence_results, global_label):
|
47 |
+
"""Create HTML table for sentence analysis with color coding."""
|
48 |
+
html = """
|
49 |
+
<style>
|
50 |
+
.analysis-table {
|
51 |
+
width: 100%;
|
52 |
+
border-collapse: collapse;
|
53 |
+
margin: 20px 0;
|
54 |
+
font-family: Arial, sans-serif;
|
55 |
+
}
|
56 |
+
.analysis-table th, .analysis-table td {
|
57 |
+
padding: 12px;
|
58 |
+
border: 1px solid #ddd;
|
59 |
+
text-align: left;
|
60 |
+
}
|
61 |
+
.analysis-table th {
|
62 |
+
background-color: #f5f5f5;
|
63 |
+
}
|
64 |
+
.global-prediction {
|
65 |
+
padding: 15px;
|
66 |
+
margin: 20px 0;
|
67 |
+
border-radius: 5px;
|
68 |
+
font-weight: bold;
|
69 |
+
}
|
70 |
+
</style>
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Add global prediction box
|
74 |
+
html += f"""
|
75 |
+
<div class="global-prediction" style="background-color: {get_label_color(global_label)}">
|
76 |
+
Global Prediction: {global_label}
|
77 |
+
</div>
|
78 |
+
"""
|
79 |
+
|
80 |
+
# Create table
|
81 |
+
html += """
|
82 |
+
<table class="analysis-table">
|
83 |
+
<tr>
|
84 |
+
<th>Sentence</th>
|
85 |
+
<th>Prediction</th>
|
86 |
+
</tr>
|
87 |
+
"""
|
88 |
+
|
89 |
+
# Add rows for each sentence
|
90 |
+
for result in sentence_results:
|
91 |
+
html += f"""
|
92 |
+
<tr style="background-color: {get_label_color(result['prediction'])}">
|
93 |
+
<td>{result['sentence']}</td>
|
94 |
+
<td>{result['prediction']}</td>
|
95 |
+
</tr>
|
96 |
+
"""
|
97 |
+
|
98 |
+
html += "</table>"
|
99 |
+
return html
|
100 |
+
|
101 |
def process_input(text_input, labels_or_premise, mode):
|
102 |
if mode == "Zero-Shot Classification":
|
103 |
labels = [label.strip() for label in labels_or_premise.split(',')]
|
|
|
112 |
# Global prediction
|
113 |
global_pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
|
114 |
global_results = {pred['label']: pred['score'] for pred in global_pred}
|
115 |
+
global_label = max(global_results.items(), key=lambda x: x[1])[0]
|
116 |
|
117 |
# Sentence-level analysis
|
118 |
sentences = sent_tokenize(text_input)
|
|
|
128 |
'scores': sent_scores
|
129 |
})
|
130 |
|
131 |
+
analysis_html = create_analysis_html(sentence_results, global_label)
|
132 |
+
return global_results, analysis_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# [Previous interface code remains the same until the outputs definition]
|
135 |
with gr.Blocks() as demo:
|
136 |
gr.Markdown("""
|
137 |
# tasksource/ModernBERT-nli demonstration
|
|
|
167 |
|
168 |
outputs = [
|
169 |
gr.Label(label="π Results"),
|
170 |
+
gr.HTML(label="π Sentence Analysis") # Changed from Markdown to HTML
|
171 |
]
|
172 |
|
173 |
with gr.Column(variant="panel") as zero_shot_examples_panel:
|