sileod commited on
Commit
d3061d0
·
verified ·
1 Parent(s): 9604b3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -61
app.py CHANGED
@@ -1,83 +1,127 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
4
  classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
5
 
6
  def zeroShotClassification(text_input, candidate_labels):
7
- labels = [label.strip(' ') for label in candidate_labels.split(',')]
8
- output = {}
9
- prediction = classifier(text_input, labels)
10
- for i in range(len(prediction['labels'])):
11
- output[prediction['labels'][i]] = prediction['scores'][i]
12
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- examples = [["One day I will see the world", "travel, live, die, future"]]
 
 
 
 
 
 
 
 
 
15
 
16
- css = """
 
17
  footer {display:none !important}
18
  .output-markdown{display:none !important}
 
 
 
 
19
  .gr-button-primary {
20
- z-index: 14;
21
- height: 43px;
22
- width: 130px;
23
- left: 0px;
24
- top: 0px;
25
- padding: 0px;
26
- cursor: pointer !important;
27
- background: none rgb(17, 20, 45) !important;
28
  border: none !important;
29
- text-align: center !important;
30
- font-family: Poppins !important;
31
- font-size: 14px !important;
32
- font-weight: 500 !important;
33
- color: rgb(255, 255, 255) !important;
34
- line-height: 1 !important;
35
  border-radius: 12px !important;
36
- transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
37
- box-shadow: none !important;
38
  }
39
- .gr-button-primary:hover{
40
- z-index: 14;
41
- height: 43px;
42
- width: 130px;
43
- left: 0px;
44
- top: 0px;
45
- padding: 0px;
46
- cursor: pointer !important;
47
- background: none rgb(66, 133, 244) !important;
48
- border: none !important;
49
- text-align: center !important;
50
- font-family: Poppins !important;
51
- font-size: 14px !important;
52
- font-weight: 500 !important;
53
- color: rgb(255, 255, 255) !important;
54
- line-height: 1 !important;
55
- border-radius: 12px !important;
56
- transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
57
- box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
58
  }
59
- .hover\:bg-orange-50:hover {
60
- --tw-bg-opacity: 1 !important;
61
- background-color: rgb(229,225,255) !important;
 
 
62
  }
63
- .to-orange-200 {
64
- --tw-gradient-to: rgb(37 56 133 / 37%) !important;
 
65
  }
66
- .from-orange-400 {
67
- --tw-gradient-from: rgb(17, 20, 45) !important;
68
- --tw-gradient-to: rgb(255 150 51 / 0);
69
- --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
70
  }
71
- .group-hover\:from-orange-500{
72
- --tw-gradient-from:rgb(17, 20, 45) !important;
73
- --tw-gradient-to: rgb(37 56 133 / 37%);
74
- --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
 
 
 
75
  }
76
- .group:hover .group-hover\:text-orange-500{
77
- --tw-text-opacity: 1 !important;
78
- color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
79
  }
80
  """
81
 
82
- demo = gr.Interface(fn=zeroShotClassification, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")], outputs=gr.Label(label="Classification"), title="Zero Shot Text Classification | Data Science Dojo", examples=examples, css=css)
83
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # Initialize the classifier
5
  classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
6
 
7
  def zeroShotClassification(text_input, candidate_labels):
8
+ # Clean and process the labels
9
+ labels = [label.strip() for label in candidate_labels.split(',')]
10
+
11
+ # Get predictions
12
+ prediction = classifier(text_input, labels)
13
+
14
+ # Format results as percentage with 2 decimal places
15
+ results = {label: f"{score*100:.2f}%"
16
+ for label, score in zip(prediction['labels'], prediction['scores'])}
17
+
18
+ # Create markdown output for detailed view
19
+ markdown_output = "### Results Breakdown:\n\n"
20
+ for label, score in sorted(results.items(), key=lambda x: float(x[1].rstrip('%')), reverse=True):
21
+ # Create confidence bar using Unicode blocks
22
+ score_num = float(score.rstrip('%'))
23
+ blocks = "█" * int(score_num/5) + "░" * (20 - int(score_num/5))
24
+ markdown_output += f"**{label}**: {blocks} {score}\n\n"
25
+
26
+ return results, markdown_output
27
 
28
+ # More diverse examples
29
+ examples = [
30
+ ["One day I will see the world", "travel, adventure, dreams, future"],
31
+ ["The movie had amazing special effects but a weak plot", "entertainment, technology, criticism, story"],
32
+ ["This new phone has an amazing camera and great battery life", "technology, photography, consumer, review"],
33
+ ["Mix flour, sugar, and eggs until well combined", "cooking, baking, instructions, food"],
34
+ ["Scientists discovered a new species of butterfly in the Amazon", "science, nature, discovery, environment"],
35
+ ["The team scored in the final minute to win the championship", "sports, victory, competition, excitement"],
36
+ ["The painting uses vibrant colors to express deep emotions", "art, emotion, creativity, analysis"],
37
+ ]
38
 
39
+ # Custom CSS with modern design
40
+ custom_css = """
41
  footer {display:none !important}
42
  .output-markdown{display:none !important}
43
+ .gradio-container {
44
+ font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
45
+ max-width: 1200px !important;
46
+ }
47
  .gr-button-primary {
48
+ background: linear-gradient(90deg, #11142D, #253885) !important;
 
 
 
 
 
 
 
49
  border: none !important;
50
+ color: white !important;
 
 
 
 
 
51
  border-radius: 12px !important;
52
+ transition: all 0.3s ease !important;
 
53
  }
54
+ .gr-button-primary:hover {
55
+ transform: translateY(-2px) !important;
56
+ box-shadow: 0 4px 12px rgba(17, 20, 45, 0.3) !important;
57
+ background: linear-gradient(90deg, #253885, #4285F4) !important;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  }
59
+ .gr-input, .gr-textarea {
60
+ border-radius: 8px !important;
61
+ border: 2px solid #E2E8F0 !important;
62
+ padding: 12px !important;
63
+ font-size: 16px !important;
64
  }
65
+ .gr-input:focus, .gr-textarea:focus {
66
+ border-color: #253885 !important;
67
+ box-shadow: 0 0 0 3px rgba(37, 56, 133, 0.2) !important;
68
  }
69
+ .gr-panel {
70
+ border-radius: 16px !important;
71
+ box-shadow: 0 4px 15px -1px rgba(0, 0, 0, 0.1) !important;
72
+ background: white !important;
73
  }
74
+ .gr-box {
75
+ border-radius: 12px !important;
76
+ background: white !important;
77
+ }
78
+ .markdown-text {
79
+ font-size: 16px !important;
80
+ line-height: 1.6 !important;
81
  }
82
+ .example-text {
83
+ font-family: 'Inter', sans-serif !important;
84
+ color: #11142D !important;
85
  }
86
  """
87
 
88
+ # Create the interface
89
+ demo = gr.Interface(
90
+ fn=zeroShotClassification,
91
+ inputs=[
92
+ gr.Textbox(
93
+ label="✍️ Input Text",
94
+ placeholder="Enter the text you want to classify...",
95
+ lines=3,
96
+ elem_classes=["example-text"]
97
+ ),
98
+ gr.Textbox(
99
+ label="🏷️ Category Labels",
100
+ placeholder="Enter comma-separated categories (e.g., happy, sad, excited, confused)",
101
+ lines=2,
102
+ elem_classes=["example-text"]
103
+ )
104
+ ],
105
+ outputs=[
106
+ gr.Label(label="📊 Classification Results"),
107
+ gr.Markdown(label="📈 Detailed Analysis", elem_classes=["markdown-text"])
108
+ ],
109
+ title="🤖 Zero-Shot Text Classification with ModernBERT",
110
+ description="""
111
+ Classify any text into categories of your choice with ModernBERT
112
+
113
+ **How to use:**
114
+ 1. Enter your text in the first box
115
+ 2. Add comma-separated category labels in the second box
116
+ 3. Click submit to see how your text matches each category
117
+
118
+ Try the examples below or create your own classifications!
119
+ """,
120
+ examples=examples,
121
+ css=custom_css,
122
+ theme=gr.themes.Soft()
123
+ )
124
+
125
+ # Launch the app
126
+ if __name__ == "__main__":
127
+ demo.launch()