Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,127 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
|
|
4 |
classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
|
5 |
|
6 |
def zeroShotClassification(text_input, candidate_labels):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
17 |
footer {display:none !important}
|
18 |
.output-markdown{display:none !important}
|
|
|
|
|
|
|
|
|
19 |
.gr-button-primary {
|
20 |
-
|
21 |
-
height: 43px;
|
22 |
-
width: 130px;
|
23 |
-
left: 0px;
|
24 |
-
top: 0px;
|
25 |
-
padding: 0px;
|
26 |
-
cursor: pointer !important;
|
27 |
-
background: none rgb(17, 20, 45) !important;
|
28 |
border: none !important;
|
29 |
-
|
30 |
-
font-family: Poppins !important;
|
31 |
-
font-size: 14px !important;
|
32 |
-
font-weight: 500 !important;
|
33 |
-
color: rgb(255, 255, 255) !important;
|
34 |
-
line-height: 1 !important;
|
35 |
border-radius: 12px !important;
|
36 |
-
transition:
|
37 |
-
box-shadow: none !important;
|
38 |
}
|
39 |
-
.gr-button-primary:hover{
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
left: 0px;
|
44 |
-
top: 0px;
|
45 |
-
padding: 0px;
|
46 |
-
cursor: pointer !important;
|
47 |
-
background: none rgb(66, 133, 244) !important;
|
48 |
-
border: none !important;
|
49 |
-
text-align: center !important;
|
50 |
-
font-family: Poppins !important;
|
51 |
-
font-size: 14px !important;
|
52 |
-
font-weight: 500 !important;
|
53 |
-
color: rgb(255, 255, 255) !important;
|
54 |
-
line-height: 1 !important;
|
55 |
-
border-radius: 12px !important;
|
56 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
57 |
-
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
58 |
}
|
59 |
-
.
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
}
|
63 |
-
.
|
64 |
-
|
|
|
65 |
}
|
66 |
-
.
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
}
|
71 |
-
.
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
75 |
}
|
76 |
-
.
|
77 |
-
|
78 |
-
color:
|
79 |
}
|
80 |
"""
|
81 |
|
82 |
-
|
83 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Initialize the classifier
|
5 |
classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
|
6 |
|
7 |
def zeroShotClassification(text_input, candidate_labels):
|
8 |
+
# Clean and process the labels
|
9 |
+
labels = [label.strip() for label in candidate_labels.split(',')]
|
10 |
+
|
11 |
+
# Get predictions
|
12 |
+
prediction = classifier(text_input, labels)
|
13 |
+
|
14 |
+
# Format results as percentage with 2 decimal places
|
15 |
+
results = {label: f"{score*100:.2f}%"
|
16 |
+
for label, score in zip(prediction['labels'], prediction['scores'])}
|
17 |
+
|
18 |
+
# Create markdown output for detailed view
|
19 |
+
markdown_output = "### Results Breakdown:\n\n"
|
20 |
+
for label, score in sorted(results.items(), key=lambda x: float(x[1].rstrip('%')), reverse=True):
|
21 |
+
# Create confidence bar using Unicode blocks
|
22 |
+
score_num = float(score.rstrip('%'))
|
23 |
+
blocks = "█" * int(score_num/5) + "░" * (20 - int(score_num/5))
|
24 |
+
markdown_output += f"**{label}**: {blocks} {score}\n\n"
|
25 |
+
|
26 |
+
return results, markdown_output
|
27 |
|
28 |
+
# More diverse examples
|
29 |
+
examples = [
|
30 |
+
["One day I will see the world", "travel, adventure, dreams, future"],
|
31 |
+
["The movie had amazing special effects but a weak plot", "entertainment, technology, criticism, story"],
|
32 |
+
["This new phone has an amazing camera and great battery life", "technology, photography, consumer, review"],
|
33 |
+
["Mix flour, sugar, and eggs until well combined", "cooking, baking, instructions, food"],
|
34 |
+
["Scientists discovered a new species of butterfly in the Amazon", "science, nature, discovery, environment"],
|
35 |
+
["The team scored in the final minute to win the championship", "sports, victory, competition, excitement"],
|
36 |
+
["The painting uses vibrant colors to express deep emotions", "art, emotion, creativity, analysis"],
|
37 |
+
]
|
38 |
|
39 |
+
# Custom CSS with modern design
|
40 |
+
custom_css = """
|
41 |
footer {display:none !important}
|
42 |
.output-markdown{display:none !important}
|
43 |
+
.gradio-container {
|
44 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
45 |
+
max-width: 1200px !important;
|
46 |
+
}
|
47 |
.gr-button-primary {
|
48 |
+
background: linear-gradient(90deg, #11142D, #253885) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
border: none !important;
|
50 |
+
color: white !important;
|
|
|
|
|
|
|
|
|
|
|
51 |
border-radius: 12px !important;
|
52 |
+
transition: all 0.3s ease !important;
|
|
|
53 |
}
|
54 |
+
.gr-button-primary:hover {
|
55 |
+
transform: translateY(-2px) !important;
|
56 |
+
box-shadow: 0 4px 12px rgba(17, 20, 45, 0.3) !important;
|
57 |
+
background: linear-gradient(90deg, #253885, #4285F4) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
}
|
59 |
+
.gr-input, .gr-textarea {
|
60 |
+
border-radius: 8px !important;
|
61 |
+
border: 2px solid #E2E8F0 !important;
|
62 |
+
padding: 12px !important;
|
63 |
+
font-size: 16px !important;
|
64 |
}
|
65 |
+
.gr-input:focus, .gr-textarea:focus {
|
66 |
+
border-color: #253885 !important;
|
67 |
+
box-shadow: 0 0 0 3px rgba(37, 56, 133, 0.2) !important;
|
68 |
}
|
69 |
+
.gr-panel {
|
70 |
+
border-radius: 16px !important;
|
71 |
+
box-shadow: 0 4px 15px -1px rgba(0, 0, 0, 0.1) !important;
|
72 |
+
background: white !important;
|
73 |
}
|
74 |
+
.gr-box {
|
75 |
+
border-radius: 12px !important;
|
76 |
+
background: white !important;
|
77 |
+
}
|
78 |
+
.markdown-text {
|
79 |
+
font-size: 16px !important;
|
80 |
+
line-height: 1.6 !important;
|
81 |
}
|
82 |
+
.example-text {
|
83 |
+
font-family: 'Inter', sans-serif !important;
|
84 |
+
color: #11142D !important;
|
85 |
}
|
86 |
"""
|
87 |
|
88 |
+
# Create the interface
|
89 |
+
demo = gr.Interface(
|
90 |
+
fn=zeroShotClassification,
|
91 |
+
inputs=[
|
92 |
+
gr.Textbox(
|
93 |
+
label="✍️ Input Text",
|
94 |
+
placeholder="Enter the text you want to classify...",
|
95 |
+
lines=3,
|
96 |
+
elem_classes=["example-text"]
|
97 |
+
),
|
98 |
+
gr.Textbox(
|
99 |
+
label="🏷️ Category Labels",
|
100 |
+
placeholder="Enter comma-separated categories (e.g., happy, sad, excited, confused)",
|
101 |
+
lines=2,
|
102 |
+
elem_classes=["example-text"]
|
103 |
+
)
|
104 |
+
],
|
105 |
+
outputs=[
|
106 |
+
gr.Label(label="📊 Classification Results"),
|
107 |
+
gr.Markdown(label="📈 Detailed Analysis", elem_classes=["markdown-text"])
|
108 |
+
],
|
109 |
+
title="🤖 Zero-Shot Text Classification with ModernBERT",
|
110 |
+
description="""
|
111 |
+
Classify any text into categories of your choice with ModernBERT
|
112 |
+
|
113 |
+
**How to use:**
|
114 |
+
1. Enter your text in the first box
|
115 |
+
2. Add comma-separated category labels in the second box
|
116 |
+
3. Click submit to see how your text matches each category
|
117 |
+
|
118 |
+
Try the examples below or create your own classifications!
|
119 |
+
""",
|
120 |
+
examples=examples,
|
121 |
+
css=custom_css,
|
122 |
+
theme=gr.themes.Soft()
|
123 |
+
)
|
124 |
+
|
125 |
+
# Launch the app
|
126 |
+
if __name__ == "__main__":
|
127 |
+
demo.launch()
|