Update app.py
Browse files
app.py
CHANGED
@@ -127,7 +127,7 @@ def process_input(text_input, labels_or_premise, mode):
|
|
127 |
# Global prediction
|
128 |
global_pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
|
129 |
global_results = {pred['label']: pred['score'] for pred in global_pred}
|
130 |
-
global_label = max(global_results.items(), key=lambda x: x[1])
|
131 |
|
132 |
# Sentence-level analysis
|
133 |
sentences = sent_tokenize(text_input)
|
@@ -143,7 +143,7 @@ def process_input(text_input, labels_or_premise, mode):
|
|
143 |
'scores': sent_scores
|
144 |
})
|
145 |
|
146 |
-
analysis_html = create_analysis_html(sentence_results, global_label)
|
147 |
return global_results, analysis_html
|
148 |
|
149 |
def update_interface(mode):
|
@@ -168,7 +168,7 @@ def update_interface(mode):
|
|
168 |
else: # Long Context NLI
|
169 |
return (
|
170 |
gr.update(
|
171 |
-
label="🔎
|
172 |
placeholder="Enter a hypothesis to test against the full context...",
|
173 |
value=long_context_examples[0][1]
|
174 |
),
|
|
|
127 |
# Global prediction
|
128 |
global_pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
|
129 |
global_results = {pred['label']: pred['score'] for pred in global_pred}
|
130 |
+
global_label, global_confidence = max(global_results.items(), key=lambda x: x[1])
|
131 |
|
132 |
# Sentence-level analysis
|
133 |
sentences = sent_tokenize(text_input)
|
|
|
143 |
'scores': sent_scores
|
144 |
})
|
145 |
|
146 |
+
analysis_html = create_analysis_html(sentence_results, global_label,global_confidence)
|
147 |
return global_results, analysis_html
|
148 |
|
149 |
def update_interface(mode):
|
|
|
168 |
else: # Long Context NLI
|
169 |
return (
|
170 |
gr.update(
|
171 |
+
label="🔎 Hypothesis",
|
172 |
placeholder="Enter a hypothesis to test against the full context...",
|
173 |
value=long_context_examples[0][1]
|
174 |
),
|