tasmimulhuda commited on
Commit
4bba01b
·
verified ·
1 Parent(s): 88afa10

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +14 -5
agent.py CHANGED
@@ -15,6 +15,8 @@ from langchain_core.messages import SystemMessage, HumanMessage
15
  from langchain_core.tools import tool
16
  from langchain.tools.retriever import create_retriever_tool
17
  from supabase.client import Client, create_client
 
 
18
 
19
  load_dotenv()
20
 
@@ -126,11 +128,17 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
126
  supabase: Client = create_client(
127
  os.environ.get("SUPABASE_URL"),
128
  os.environ.get("SUPABASE_SERVICE_KEY"))
129
- vector_store = SupabaseVectorStore(
130
- client=supabase,
131
- embedding= embeddings,
132
- table_name="documents",
133
- query_name="match_documents_langchain",
 
 
 
 
 
 
134
  )
135
  create_retriever_tool = create_retriever_tool(
136
  retriever=vector_store.as_retriever(),
@@ -182,6 +190,7 @@ def build_graph(provider: str = "groq"):
182
  def retriever(state: MessagesState):
183
  """Retriever node"""
184
  similar_question = vector_store.similarity_search(state["messages"][0].content)
 
185
  example_msg = HumanMessage(
186
  content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
187
  )
 
15
  from langchain_core.tools import tool
16
  from langchain.tools.retriever import create_retriever_tool
17
  from supabase.client import Client, create_client
18
+ from langchain_core.documents import Document
19
+ from langchain_community.vectorstores import Chroma
20
 
21
  load_dotenv()
22
 
 
128
  supabase: Client = create_client(
129
  os.environ.get("SUPABASE_URL"),
130
  os.environ.get("SUPABASE_SERVICE_KEY"))
131
+ # vector_store = SupabaseVectorStore(
132
+ # client=supabase,
133
+ # embedding= embeddings,
134
+ # table_name="documents",
135
+ # query_name="match_documents_langchain",
136
+ # )
137
+
138
+ vector_store = Chroma(
139
+ collection_name = 'documents',
140
+ embedding_function=embeddings,
141
+ persist_directory="./vector_db" # Omit for in-memory only
142
  )
143
  create_retriever_tool = create_retriever_tool(
144
  retriever=vector_store.as_retriever(),
 
190
  def retriever(state: MessagesState):
191
  """Retriever node"""
192
  similar_question = vector_store.similarity_search(state["messages"][0].content)
193
+ # results = vector_store.similarity_search(query=state["messages"][0].content,k=3)
194
  example_msg = HumanMessage(
195
  content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
196
  )