Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -15,6 +15,8 @@ from langchain_core.messages import SystemMessage, HumanMessage
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
from supabase.client import Client, create_client
|
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
@@ -126,11 +128,17 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
-
vector_store = SupabaseVectorStore(
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
create_retriever_tool = create_retriever_tool(
|
136 |
retriever=vector_store.as_retriever(),
|
@@ -182,6 +190,7 @@ def build_graph(provider: str = "groq"):
|
|
182 |
def retriever(state: MessagesState):
|
183 |
"""Retriever node"""
|
184 |
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
|
|
185 |
example_msg = HumanMessage(
|
186 |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
187 |
)
|
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
from supabase.client import Client, create_client
|
18 |
+
from langchain_core.documents import Document
|
19 |
+
from langchain_community.vectorstores import Chroma
|
20 |
|
21 |
load_dotenv()
|
22 |
|
|
|
128 |
supabase: Client = create_client(
|
129 |
os.environ.get("SUPABASE_URL"),
|
130 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
131 |
+
# vector_store = SupabaseVectorStore(
|
132 |
+
# client=supabase,
|
133 |
+
# embedding= embeddings,
|
134 |
+
# table_name="documents",
|
135 |
+
# query_name="match_documents_langchain",
|
136 |
+
# )
|
137 |
+
|
138 |
+
vector_store = Chroma(
|
139 |
+
collection_name = 'documents',
|
140 |
+
embedding_function=embeddings,
|
141 |
+
persist_directory="./vector_db" # Omit for in-memory only
|
142 |
)
|
143 |
create_retriever_tool = create_retriever_tool(
|
144 |
retriever=vector_store.as_retriever(),
|
|
|
190 |
def retriever(state: MessagesState):
|
191 |
"""Retriever node"""
|
192 |
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
193 |
+
# results = vector_store.similarity_search(query=state["messages"][0].content,k=3)
|
194 |
example_msg = HumanMessage(
|
195 |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
196 |
)
|