tasmimulhuda commited on
Commit
d9d2069
·
verified ·
1 Parent(s): 5c9d91c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +211 -6
app.py CHANGED
@@ -1,8 +1,10 @@
1
  import os
 
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
@@ -13,11 +15,15 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
21
 
22
  def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
@@ -46,7 +52,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
46
  return f"Error initializing agent: {e}", None
47
  # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
@@ -193,4 +199,203 @@ if __name__ == "__main__":
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import inspect
3
  import gradio as gr
4
  import requests
 
5
  import pandas as pd
6
+ from langchain_core.messages import HumanMessage
7
+ from agent import build_graph
8
 
9
  # (Keep Constants as is)
10
  # --- Constants ---
 
15
  class BasicAgent:
16
  def __init__(self):
17
  print("BasicAgent initialized.")
18
+ self.graph = build_graph()
19
  def __call__(self, question: str) -> str:
20
  print(f"Agent received question (first 50 chars): {question[:50]}...")
21
+ # Wrap the question in a HumanMessage from langchain_core
22
+ messages = [HumanMessage(content=question)]
23
+ messages = self.graph.invoke({"messages": messages})
24
+ answer = messages['messages'][-1].content
25
+ return answer[14:]
26
+
27
 
28
  def run_and_submit_all( profile: gr.OAuthProfile | None):
29
  """
 
52
  return f"Error initializing agent: {e}", None
53
  # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
54
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
55
+ print(f"agent_code: {agent_code}")
56
 
57
  # 2. Fetch Questions
58
  print(f"Fetching questions from: {questions_url}")
 
199
  print("-"*(60 + len(" App Starting ")) + "\n")
200
 
201
  print("Launching Gradio Interface for Basic Agent Evaluation...")
202
+ demo.launch(debug=True, share=False)
203
+
204
+
205
+
206
+ # import os
207
+ # import gradio as gr
208
+ # import requests
209
+ # import inspect
210
+ # import pandas as pd
211
+
212
+ # # (Keep Constants as is)
213
+ # # --- Constants ---
214
+ # DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
215
+
216
+ # # --- Basic Agent Definition ---
217
+ # # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
218
+ # class BasicAgent:
219
+ # def __init__(self):
220
+ # print("BasicAgent initialized.")
221
+ # def __call__(self, question: str) -> str:
222
+ # print(f"Agent received question (first 50 chars): {question[:50]}...")
223
+ # fixed_answer = "This is a default answer."
224
+ # print(f"Agent returning fixed answer: {fixed_answer}")
225
+ # return fixed_answer
226
+
227
+ # def run_and_submit_all( profile: gr.OAuthProfile | None):
228
+ # """
229
+ # Fetches all questions, runs the BasicAgent on them, submits all answers,
230
+ # and displays the results.
231
+ # """
232
+ # # --- Determine HF Space Runtime URL and Repo URL ---
233
+ # space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
234
+
235
+ # if profile:
236
+ # username= f"{profile.username}"
237
+ # print(f"User logged in: {username}")
238
+ # else:
239
+ # print("User not logged in.")
240
+ # return "Please Login to Hugging Face with the button.", None
241
+
242
+ # api_url = DEFAULT_API_URL
243
+ # questions_url = f"{api_url}/questions"
244
+ # submit_url = f"{api_url}/submit"
245
+
246
+ # # 1. Instantiate Agent ( modify this part to create your agent)
247
+ # try:
248
+ # agent = BasicAgent()
249
+ # except Exception as e:
250
+ # print(f"Error instantiating agent: {e}")
251
+ # return f"Error initializing agent: {e}", None
252
+ # # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
253
+ # agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
254
+ # print(agent_code)
255
+
256
+ # # 2. Fetch Questions
257
+ # print(f"Fetching questions from: {questions_url}")
258
+ # try:
259
+ # response = requests.get(questions_url, timeout=15)
260
+ # response.raise_for_status()
261
+ # questions_data = response.json()
262
+ # if not questions_data:
263
+ # print("Fetched questions list is empty.")
264
+ # return "Fetched questions list is empty or invalid format.", None
265
+ # print(f"Fetched {len(questions_data)} questions.")
266
+ # except requests.exceptions.RequestException as e:
267
+ # print(f"Error fetching questions: {e}")
268
+ # return f"Error fetching questions: {e}", None
269
+ # except requests.exceptions.JSONDecodeError as e:
270
+ # print(f"Error decoding JSON response from questions endpoint: {e}")
271
+ # print(f"Response text: {response.text[:500]}")
272
+ # return f"Error decoding server response for questions: {e}", None
273
+ # except Exception as e:
274
+ # print(f"An unexpected error occurred fetching questions: {e}")
275
+ # return f"An unexpected error occurred fetching questions: {e}", None
276
+
277
+ # # 3. Run your Agent
278
+ # results_log = []
279
+ # answers_payload = []
280
+ # print(f"Running agent on {len(questions_data)} questions...")
281
+ # for item in questions_data:
282
+ # task_id = item.get("task_id")
283
+ # question_text = item.get("question")
284
+ # if not task_id or question_text is None:
285
+ # print(f"Skipping item with missing task_id or question: {item}")
286
+ # continue
287
+ # try:
288
+ # submitted_answer = agent(question_text)
289
+ # answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
290
+ # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
291
+ # except Exception as e:
292
+ # print(f"Error running agent on task {task_id}: {e}")
293
+ # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
294
+
295
+ # if not answers_payload:
296
+ # print("Agent did not produce any answers to submit.")
297
+ # return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
298
+
299
+ # # 4. Prepare Submission
300
+ # submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
301
+ # status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
302
+ # print(status_update)
303
+
304
+ # # 5. Submit
305
+ # print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
306
+ # try:
307
+ # response = requests.post(submit_url, json=submission_data, timeout=60)
308
+ # response.raise_for_status()
309
+ # result_data = response.json()
310
+ # final_status = (
311
+ # f"Submission Successful!\n"
312
+ # f"User: {result_data.get('username')}\n"
313
+ # f"Overall Score: {result_data.get('score', 'N/A')}% "
314
+ # f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
315
+ # f"Message: {result_data.get('message', 'No message received.')}"
316
+ # )
317
+ # print("Submission successful.")
318
+ # results_df = pd.DataFrame(results_log)
319
+ # return final_status, results_df
320
+ # except requests.exceptions.HTTPError as e:
321
+ # error_detail = f"Server responded with status {e.response.status_code}."
322
+ # try:
323
+ # error_json = e.response.json()
324
+ # error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
325
+ # except requests.exceptions.JSONDecodeError:
326
+ # error_detail += f" Response: {e.response.text[:500]}"
327
+ # status_message = f"Submission Failed: {error_detail}"
328
+ # print(status_message)
329
+ # results_df = pd.DataFrame(results_log)
330
+ # return status_message, results_df
331
+ # except requests.exceptions.Timeout:
332
+ # status_message = "Submission Failed: The request timed out."
333
+ # print(status_message)
334
+ # results_df = pd.DataFrame(results_log)
335
+ # return status_message, results_df
336
+ # except requests.exceptions.RequestException as e:
337
+ # status_message = f"Submission Failed: Network error - {e}"
338
+ # print(status_message)
339
+ # results_df = pd.DataFrame(results_log)
340
+ # return status_message, results_df
341
+ # except Exception as e:
342
+ # status_message = f"An unexpected error occurred during submission: {e}"
343
+ # print(status_message)
344
+ # results_df = pd.DataFrame(results_log)
345
+ # return status_message, results_df
346
+
347
+
348
+ # # --- Build Gradio Interface using Blocks ---
349
+ # with gr.Blocks() as demo:
350
+ # gr.Markdown("# Basic Agent Evaluation Runner")
351
+ # gr.Markdown(
352
+ # """
353
+ # **Instructions:**
354
+
355
+ # 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
356
+ # 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
357
+ # 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
358
+
359
+ # ---
360
+ # **Disclaimers:**
361
+ # Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
362
+ # This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
363
+ # """
364
+ # )
365
+
366
+ # gr.LoginButton()
367
+
368
+ # run_button = gr.Button("Run Evaluation & Submit All Answers")
369
+
370
+ # status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
371
+ # # Removed max_rows=10 from DataFrame constructor
372
+ # results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
373
+
374
+ # run_button.click(
375
+ # fn=run_and_submit_all,
376
+ # outputs=[status_output, results_table]
377
+ # )
378
+
379
+ # if __name__ == "__main__":
380
+ # print("\n" + "-"*30 + " App Starting " + "-"*30)
381
+ # # Check for SPACE_HOST and SPACE_ID at startup for information
382
+ # space_host_startup = os.getenv("SPACE_HOST")
383
+ # space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
384
+
385
+ # if space_host_startup:
386
+ # print(f"✅ SPACE_HOST found: {space_host_startup}")
387
+ # print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
388
+ # else:
389
+ # print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
390
+
391
+ # if space_id_startup: # Print repo URLs if SPACE_ID is found
392
+ # print(f"✅ SPACE_ID found: {space_id_startup}")
393
+ # print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
394
+ # print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
395
+ # else:
396
+ # print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
397
+
398
+ # print("-"*(60 + len(" App Starting ")) + "\n")
399
+
400
+ # print("Launching Gradio Interface for Basic Agent Evaluation...")
401
+ # demo.launch(debug=True, share=False)