Spaces:
Runtime error
Runtime error
File size: 20,132 Bytes
7f9376c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
"""Util functions for codebook features."""
import re
import typing
from dataclasses import dataclass
from functools import partial
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from termcolor import colored
from tqdm import tqdm
@dataclass
class CodeInfo:
"""Dataclass for codebook info."""
code: int
layer: int
head: Optional[int]
cb_at: Optional[str] = None
# for patching interventions
pos: Optional[int] = None
code_pos: Optional[int] = -1
# for description & regex-based interpretation
description: Optional[str] = None
regex: Optional[str] = None
prec: Optional[float] = None
recall: Optional[float] = None
num_acts: Optional[int] = None
def __post_init__(self):
"""Convert to appropriate types."""
self.code = int(self.code)
self.layer = int(self.layer)
if self.head:
self.head = int(self.head)
if self.pos:
self.pos = int(self.pos)
if self.code_pos:
self.code_pos = int(self.code_pos)
if self.prec:
self.prec = float(self.prec)
assert 0 <= self.prec <= 1
if self.recall:
self.recall = float(self.recall)
assert 0 <= self.recall <= 1
if self.num_acts:
self.num_acts = int(self.num_acts)
def check_description_info(self):
"""Check if the regex info is present."""
assert self.num_acts is not None and self.description is not None
if self.regex is not None:
assert self.prec is not None and self.recall is not None
def check_patch_info(self):
"""Check if the patch info is present."""
# TODO: pos can be none for patching
assert self.pos is not None and self.code_pos is not None
def __repr__(self):
"""Return the string representation."""
repr = f"CodeInfo(code={self.code}, layer={self.layer}, head={self.head}, cb_at={self.cb_at}"
if self.pos is not None or self.code_pos is not None:
repr += f", pos={self.pos}, code_pos={self.code_pos}"
if self.description is not None:
repr += f", description={self.description}"
if self.regex is not None:
repr += f", regex={self.regex}, prec={self.prec}, recall={self.recall}"
if self.num_acts is not None:
repr += f", num_acts={self.num_acts}"
repr += ")"
return repr
def logits_to_pred(logits, tokenizer, k=5):
"""Convert logits to top-k predictions."""
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = sorted_logits.softmax(dim=-1)
topk_preds = [tokenizer.convert_ids_to_tokens(e) for e in sorted_indices[:, -1, :k]]
topk_preds = [
tokenizer.convert_tokens_to_string([e]) for batch in topk_preds for e in batch
]
return [(topk_preds[i], probs[:, -1, i].item()) for i in range(len(topk_preds))]
def patch_codebook_ids(
corrupted_codebook_ids, hook, pos, cache, cache_pos=None, code_idx=None
):
"""Patch codebook ids with cached ids."""
if cache_pos is None:
cache_pos = pos
if code_idx is None:
corrupted_codebook_ids[:, pos] = cache[hook.name][:, cache_pos]
else:
for code_id in range(32):
if code_id in code_idx:
corrupted_codebook_ids[:, pos, code_id] = cache[hook.name][
:, cache_pos, code_id
]
else:
corrupted_codebook_ids[:, pos, code_id] = -1
return corrupted_codebook_ids
def logits_to_ave_logit_diff(logits, answer_tokens, per_prompt=False):
"""Calculate the average logit difference between the answer and the other token."""
# Only the final logits are relevant for the answer
final_logits = logits[:, -1, :]
answer_logits = final_logits.gather(dim=-1, index=answer_tokens)
answer_logit_diff = answer_logits[:, 0] - answer_logits[:, 1]
if per_prompt:
return answer_logit_diff
else:
return answer_logit_diff.mean()
def normalize_patched_logit_diff(
patched_logit_diff,
base_average_logit_diff,
corrupted_average_logit_diff,
):
"""Normalize the patched logit difference."""
# Subtract corrupted logit diff to measure the improvement,
# divide by the total improvement from clean to corrupted to normalise
# 0 means zero change, negative means actively made worse,
# 1 means totally recovered clean performance, >1 means actively *improved* on clean performance
return (patched_logit_diff - corrupted_average_logit_diff) / (
base_average_logit_diff - corrupted_average_logit_diff
)
def features_to_tokens(cb_key, cb_acts, num_codes, code=None):
"""Return the set of token ids each codebook feature activates on."""
codebook_ids = cb_acts[cb_key]
if code is None:
features_tokens = [[] for _ in range(num_codes)]
for i in tqdm(range(codebook_ids.shape[0])):
for j in range(codebook_ids.shape[1]):
for k in range(codebook_ids.shape[2]):
features_tokens[codebook_ids[i, j, k]].append((i, j))
else:
idx0, idx1, _ = np.where(codebook_ids == code)
features_tokens = list(zip(idx0, idx1))
return features_tokens
def color_str(s: str, color: str, html: bool):
"""Color the string for html or terminal."""
if html:
return f"<span style='color:{color}'>{s}</span>"
else:
return colored(s, color)
def color_tokens_red_automata(tokens, red_idx, html=False):
"""Separate states with a dash and color red the tokens in red_idx."""
ret_string = ""
itr_over_red_idx = 0
tokens_enumerate = enumerate(tokens)
if tokens[0] == "<|endoftext|>":
next(tokens_enumerate)
if red_idx[0] == 0:
itr_over_red_idx += 1
for i, c in tokens_enumerate:
if i % 2 == 1:
ret_string += "-"
if itr_over_red_idx < len(red_idx) and i == red_idx[itr_over_red_idx]:
ret_string += color_str(c, "red", html)
itr_over_red_idx += 1
else:
ret_string += c
return ret_string
def color_tokens_red(tokens, red_idx, n=3, html=False):
"""Color red the tokens in red_idx."""
ret_string = ""
last_colored_token_idx = -1
for i in red_idx:
c_str = tokens[i]
if i <= last_colored_token_idx + 2 * n + 1:
ret_string += "".join(tokens[last_colored_token_idx + 1 : i])
else:
ret_string += "".join(
tokens[last_colored_token_idx + 1 : last_colored_token_idx + n + 1]
)
ret_string += " ... "
ret_string += "".join(tokens[i - n : i])
ret_string += color_str(c_str, "red", html)
last_colored_token_idx = i
ret_string += "".join(
tokens[
last_colored_token_idx + 1 : min(last_colored_token_idx + n, len(tokens))
]
)
return ret_string
def prepare_example_print(
example_id,
example_tokens,
tokens_to_color_red,
html,
color_red_fn=color_tokens_red,
):
"""Format example to print."""
example_output = color_str(example_id, "green", html)
example_output += (
": "
+ color_red_fn(example_tokens, tokens_to_color_red, html=html)
+ ("<br>" if html else "\n")
)
return example_output
def tkn_print(
ll,
tokens,
separate_states,
n=3,
max_examples=100,
randomize=False,
html=False,
return_example_list=False,
):
"""Format and prints the tokens in ll."""
if randomize:
raise NotImplementedError("Randomize not yet implemented.")
indices = range(len(ll))
print_output = [] if return_example_list else ""
curr_ex = ll[0][0]
total_examples = 0
tokens_to_color_red = []
color_red_fn = (
color_tokens_red_automata if separate_states else partial(color_tokens_red, n=n)
)
for idx in indices:
if total_examples > max_examples:
break
i, j = ll[idx]
if i != curr_ex and curr_ex >= 0:
curr_ex_output = prepare_example_print(
curr_ex,
tokens[curr_ex],
tokens_to_color_red,
html,
color_red_fn,
)
total_examples += 1
if return_example_list:
print_output.append((curr_ex_output, len(tokens_to_color_red)))
else:
print_output += curr_ex_output
curr_ex = i
tokens_to_color_red = []
tokens_to_color_red.append(j)
curr_ex_output = prepare_example_print(
curr_ex,
tokens[curr_ex],
tokens_to_color_red,
html,
color_red_fn,
)
if return_example_list:
print_output.append((curr_ex_output, len(tokens_to_color_red)))
else:
print_output += curr_ex_output
asterisk_str = "********************************************"
print_output += color_str(asterisk_str, "green", html)
total_examples += 1
return print_output
def print_ft_tkns(
ft_tkns,
tokens,
separate_states=False,
n=3,
start=0,
stop=1000,
indices=None,
max_examples=100,
freq_filter=None,
randomize=False,
html=False,
return_example_list=False,
):
"""Print the tokens for the codebook features."""
indices = list(range(start, stop)) if indices is None else indices
num_tokens = len(tokens) * len(tokens[0])
codes, token_act_freqs, token_acts = [], [], []
for i in indices:
tkns = ft_tkns[i]
freq = (len(tkns), 100 * len(tkns) / num_tokens)
if freq_filter is not None and freq[1] > freq_filter:
continue
codes.append(i)
token_act_freqs.append(freq)
if len(tkns) > 0:
tkn_acts = tkn_print(
tkns,
tokens,
separate_states,
n=n,
max_examples=max_examples,
randomize=randomize,
html=html,
return_example_list=return_example_list,
)
token_acts.append(tkn_acts)
else:
token_acts.append("")
return codes, token_act_freqs, token_acts
def patch_in_codes(run_cb_ids, hook, pos, code, code_pos=None):
"""Patch in the `code` at `run_cb_ids`."""
pos = slice(None) if pos is None else pos
code_pos = slice(None) if code_pos is None else code_pos
if code_pos == "append":
assert pos == slice(None)
run_cb_ids = F.pad(run_cb_ids, (0, 1), mode="constant", value=code)
if isinstance(pos, typing.Iterable) or isinstance(pos, typing.Iterable):
for p in pos:
run_cb_ids[:, p, code_pos] = code
else:
run_cb_ids[:, pos, code_pos] = code
return run_cb_ids
def get_cb_layer_name(cb_at, layer_idx, head_idx=None):
"""Get the layer name used to store hooks/cache."""
if head_idx is None:
return f"blocks.{layer_idx}.{cb_at}.codebook_layer.hook_codebook_ids"
else:
return f"blocks.{layer_idx}.{cb_at}.codebook_layer.codebook.{head_idx}.hook_codebook_ids"
def get_cb_layer_names(layer, patch_types, n_heads):
"""Get the layer names used to store hooks/cache."""
layer_names = []
attn_added, mlp_added = False, False
if "attn_out" in patch_types:
attn_added = True
for head in range(n_heads):
layer_names.append(
f"blocks.{layer}.attn.codebook_layer.codebook.{head}.hook_codebook_ids"
)
if "mlp_out" in patch_types:
mlp_added = True
layer_names.append(f"blocks.{layer}.mlp.codebook_layer.hook_codebook_ids")
for patch_type in patch_types:
# match patch_type of the pattern attn_\d_head_\d
attn_head = re.match(r"attn_(\d)_head_(\d)", patch_type)
if (not attn_added) and attn_head and attn_head[1] == str(layer):
layer_names.append(
f"blocks.{layer}.attn.codebook_layer.codebook.{attn_head[2]}.hook_codebook_ids"
)
mlp = re.match(r"mlp_(\d)", patch_type)
if (not mlp_added) and mlp and mlp[1] == str(layer):
layer_names.append(f"blocks.{layer}.mlp.codebook_layer.hook_codebook_ids")
return layer_names
def cb_layer_name_to_info(layer_name):
"""Get the layer info from the layer name."""
layer_name_split = layer_name.split(".")
layer_idx = int(layer_name_split[1])
cb_at = layer_name_split[2]
if cb_at == "mlp":
head_idx = None
else:
head_idx = int(layer_name_split[5])
return cb_at, layer_idx, head_idx
def get_hooks(code, cb_at, layer_idx, head_idx=None, pos=None):
"""Get the hooks for the codebook features."""
hook_fns = [
partial(patch_in_codes, pos=pos, code=code[i]) for i in range(len(code))
]
return [
(get_cb_layer_name(cb_at[i], layer_idx[i], head_idx[i]), hook_fns[i])
for i in range(len(code))
]
def run_with_codes(
input, cb_model, code, cb_at, layer_idx, head_idx=None, pos=None, prepend_bos=True
):
"""Run the model with the codebook features patched in."""
hook_fns = [
partial(patch_in_codes, pos=pos, code=code[i]) for i in range(len(code))
]
cb_model.reset_codebook_metrics()
cb_model.reset_hook_kwargs()
fwd_hooks = [
(get_cb_layer_name(cb_at[i], layer_idx[i], head_idx[i]), hook_fns[i])
for i in range(len(cb_at))
]
with cb_model.hooks(fwd_hooks, [], True, False) as hooked_model:
patched_logits, patched_cache = hooked_model.run_with_cache(
input, prepend_bos=prepend_bos
)
return patched_logits, patched_cache
def in_hook_list(list_of_arg_tuples, layer, head=None):
"""Check if the component specified by `layer` and `head` is in the `list_of_arg_tuples`."""
# if head is not provided, then checks in MLP
for arg_tuple in list_of_arg_tuples:
if head is None:
if arg_tuple.cb_at == "mlp" and arg_tuple.layer == layer:
return True
else:
if (
arg_tuple.cb_at == "attn"
and arg_tuple.layer == layer
and arg_tuple.head == head
):
return True
return False
# def generate_with_codes(input, code, cb_at, layer_idx, head_idx=None, pos=None, disable_other_comps=False):
def generate_with_codes(
input,
cb_model,
list_of_code_infos=(),
disable_other_comps=False,
automata=None,
generate_kwargs=None,
):
"""Model's generation with the codebook features patched in."""
if generate_kwargs is None:
generate_kwargs = {}
hook_fns = [
partial(patch_in_codes, pos=tupl.pos, code=tupl.code)
for tupl in list_of_code_infos
]
fwd_hooks = [
(get_cb_layer_name(tupl.cb_at, tupl.layer, tupl.head), hook_fns[i])
for i, tupl in enumerate(list_of_code_infos)
]
cb_model.reset_hook_kwargs()
if disable_other_comps:
for layer, cb in cb_model.all_codebooks.items():
for head_idx, head in enumerate(cb[0].codebook):
if not in_hook_list(list_of_code_infos, layer, head_idx):
head.set_hook_kwargs(
disable_topk=1, disable_for_tkns=[-1], keep_k_codes=False
)
if not in_hook_list(list_of_code_infos, layer):
cb[1].set_hook_kwargs(
disable_topk=1, disable_for_tkns=[-1], keep_k_codes=False
)
with cb_model.hooks(fwd_hooks, [], True, False) as hooked_model:
gen = hooked_model.generate(input, **generate_kwargs)
return automata.seq_to_traj(gen)[0] if automata is not None else gen
def kl_div(logits1, logits2, pos=-1, reduction="batchmean"):
"""Calculate the KL divergence between the logits at `pos`."""
logits1_last, logits2_last = logits1[:, pos, :], logits2[:, pos, :]
# calculate kl divergence between clean and mod logits last
return F.kl_div(
F.log_softmax(logits1_last, dim=-1),
F.log_softmax(logits2_last, dim=-1),
log_target=True,
reduction=reduction,
)
def JSD(logits1, logits2, pos=-1, reduction="batchmean"):
"""Compute the Jensen-Shannon divergence between two distributions."""
if len(logits1.shape) == 3:
logits1, logits2 = logits1[:, pos, :], logits2[:, pos, :]
probs1 = F.softmax(logits1, dim=-1)
probs2 = F.softmax(logits2, dim=-1)
total_m = (0.5 * (probs1 + probs2)).log()
loss = 0.0
loss += F.kl_div(
total_m,
F.log_softmax(logits1, dim=-1),
log_target=True,
reduction=reduction,
)
loss += F.kl_div(
total_m,
F.log_softmax(logits2, dim=-1),
log_target=True,
reduction=reduction,
)
return 0.5 * loss
def residual_stream_patching_hook(resid_pre, hook, cache, position: int):
"""Patch in the codebook features at `position` from `cache`."""
clean_resid_pre = cache[hook.name]
resid_pre[:, position, :] = clean_resid_pre[:, position, :]
return resid_pre
def find_code_changes(cache1, cache2, pos=None):
"""Find the codebook codes that are different between the two caches."""
for k in cache1.keys():
if "codebook" in k:
c1 = cache1[k][0, pos]
c2 = cache2[k][0, pos]
if not torch.all(c1 == c2):
print(cb_layer_name_to_info(k), c1.tolist(), c2.tolist())
print(cb_layer_name_to_info(k), c1.tolist(), c2.tolist())
def common_codes_in_cache(cache_codes, threshold=0.0):
"""Get the common code in the cache."""
codes, counts = torch.unique(cache_codes, return_counts=True, sorted=True)
counts = counts.float() * 100
counts /= cache_codes.shape[1]
counts, indices = torch.sort(counts, descending=True)
codes = codes[indices]
indices = counts > threshold
codes, counts = codes[indices], counts[indices]
return codes, counts
def parse_code_info_string(
info_str: str, cb_at="attn", pos=None, code_pos=-1
) -> CodeInfo:
"""Parse the code info string.
The format of the `info_str` is:
`code: 0, layer: 0, head: 0, occ_freq: 0.0, train_act_freq: 0.0`.
"""
code, layer, head, occ_freq, train_act_freq = info_str.split(", ")
code = int(code.split(": ")[1])
layer = int(layer.split(": ")[1])
head = int(head.split(": ")[1]) if head else None
occ_freq = float(occ_freq.split(": ")[1])
train_act_freq = float(train_act_freq.split(": ")[1])
return CodeInfo(code, layer, head, pos=pos, code_pos=code_pos, cb_at=cb_at)
def parse_concept_codes_string(info_str: str, pos=None, code_append=False):
"""Parse the concept codes string."""
code_info_strs = info_str.strip().split("\n")
concept_codes = []
layer, head = None, None
code_pos = "append" if code_append else -1
for code_info_str in code_info_strs:
concept_codes.append(
parse_code_info_string(code_info_str, pos=pos, code_pos=code_pos)
)
if code_append:
continue
if layer == concept_codes[-1].layer and head == concept_codes[-1].head:
code_pos -= 1
else:
code_pos = -1
concept_codes[-1].code_pos = code_pos
layer, head = concept_codes[-1].layer, concept_codes[-1].head
return concept_codes
|