tazztone commited on
Commit
e8b6064
1 Parent(s): ff242ea

Update app.py

Browse files

dark_mode_4bit_gui

Files changed (1) hide show
  1. app.py +856 -321
app.py CHANGED
@@ -1,336 +1,871 @@
1
- #import spaces
2
- import gradio as gr
3
- from huggingface_hub import InferenceClient
4
- from torch import nn
5
- from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
6
- from pathlib import Path
7
  import torch
8
- import torch.amp.autocast_mode
 
 
 
 
 
 
 
 
 
9
  from PIL import Image
10
- import os
11
  import torchvision.transforms.functional as TVF
 
 
 
12
 
13
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  CLIP_PATH = "google/siglip-so400m-patch14-384"
15
- CHECKPOINT_PATH = Path("cgrkzexw-599808")
16
- TITLE = "<h1><center>JoyCaption Alpha Two (2024-09-26a)</center></h1>"
17
  CAPTION_TYPE_MAP = {
18
- "Descriptive": [
19
- "Write a descriptive caption for this image in a formal tone.",
20
- "Write a descriptive caption for this image in a formal tone within {word_count} words.",
21
- "Write a {length} descriptive caption for this image in a formal tone.",
22
- ],
23
- "Descriptive (Informal)": [
24
- "Write a descriptive caption for this image in a casual tone.",
25
- "Write a descriptive caption for this image in a casual tone within {word_count} words.",
26
- "Write a {length} descriptive caption for this image in a casual tone.",
27
- ],
28
- "Training Prompt": [
29
- "Write a stable diffusion prompt for this image.",
30
- "Write a stable diffusion prompt for this image within {word_count} words.",
31
- "Write a {length} stable diffusion prompt for this image.",
32
- ],
33
- "MidJourney": [
34
- "Write a MidJourney prompt for this image.",
35
- "Write a MidJourney prompt for this image within {word_count} words.",
36
- "Write a {length} MidJourney prompt for this image.",
37
- ],
38
- "Booru tag list": [
39
- "Write a list of Booru tags for this image.",
40
- "Write a list of Booru tags for this image within {word_count} words.",
41
- "Write a {length} list of Booru tags for this image.",
42
- ],
43
- "Booru-like tag list": [
44
- "Write a list of Booru-like tags for this image.",
45
- "Write a list of Booru-like tags for this image within {word_count} words.",
46
- "Write a {length} list of Booru-like tags for this image.",
47
- ],
48
- "Art Critic": [
49
- "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
50
- "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
51
- "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
52
- ],
53
- "Product Listing": [
54
- "Write a caption for this image as though it were a product listing.",
55
- "Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
56
- "Write a {length} caption for this image as though it were a product listing.",
57
- ],
58
- "Social Media Post": [
59
- "Write a caption for this image as if it were being used for a social media post.",
60
- "Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
61
- "Write a {length} caption for this image as if it were being used for a social media post.",
62
- ],
63
  }
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
66
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  class ImageAdapter(nn.Module):
69
- def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
70
- super().__init__()
71
- self.deep_extract = deep_extract
72
-
73
- if self.deep_extract:
74
- input_features = input_features * 5
75
-
76
- self.linear1 = nn.Linear(input_features, output_features)
77
- self.activation = nn.GELU()
78
- self.linear2 = nn.Linear(output_features, output_features)
79
- self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
80
- self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
81
-
82
- # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
83
- self.other_tokens = nn.Embedding(3, output_features)
84
- self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
85
-
86
- def forward(self, vision_outputs: torch.Tensor):
87
- if self.deep_extract:
88
- x = torch.concat((
89
- vision_outputs[-2],
90
- vision_outputs[3],
91
- vision_outputs[7],
92
- vision_outputs[13],
93
- vision_outputs[20],
94
- ), dim=-1)
95
- assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
96
- assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
97
- else:
98
- x = vision_outputs[-2]
99
-
100
- x = self.ln1(x)
101
-
102
- if self.pos_emb is not None:
103
- assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
104
- x = x + self.pos_emb
105
-
106
- x = self.linear1(x)
107
- x = self.activation(x)
108
- x = self.linear2(x)
109
-
110
- # <|image_start|>, IMAGE, <|image_end|>
111
- other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
112
- assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
113
- x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
114
-
115
- return x
116
-
117
- def get_eot_embedding(self):
118
- return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
119
-
120
-
121
-
122
- # Load CLIP
123
- print("Loading CLIP")
124
- clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
125
- clip_model = AutoModel.from_pretrained(CLIP_PATH)
126
- clip_model = clip_model.vision_model
127
-
128
- assert (CHECKPOINT_PATH / "clip_model.pt").exists()
129
- print("Loading VLM's custom vision model")
130
- checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
131
- checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
132
- clip_model.load_state_dict(checkpoint)
133
- del checkpoint
134
-
135
- clip_model.eval()
136
- clip_model.requires_grad_(False)
137
- clip_model.to("cuda")
138
-
139
-
140
- # Tokenizer
141
- print("Loading tokenizer")
142
- tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
143
- assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
144
-
145
- # LLM
146
- print("Loading LLM")
147
- print("Loading VLM's custom text model")
148
- text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16)
149
- text_model.eval()
150
-
151
- # Image Adapter
152
- print("Loading image adapter")
153
- image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
154
- image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
155
- image_adapter.eval()
156
- image_adapter.to("cuda")
157
-
158
-
159
- #@spaces.GPU()
160
- @torch.no_grad()
161
- def stream_chat(input_image: Image.Image, caption_type: str, caption_length: str | int, extra_options: list[str], name_input: str, custom_prompt: str) -> tuple[str, str]:
162
- torch.cuda.empty_cache()
163
-
164
- # 'any' means no length specified
165
- length = None if caption_length == "any" else caption_length
166
-
167
- if isinstance(length, str):
168
- try:
169
- length = int(length)
170
- except ValueError:
171
- pass
172
-
173
- # Build prompt
174
- if length is None:
175
- map_idx = 0
176
- elif isinstance(length, int):
177
- map_idx = 1
178
- elif isinstance(length, str):
179
- map_idx = 2
180
- else:
181
- raise ValueError(f"Invalid caption length: {length}")
182
-
183
- prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
184
-
185
- # Add extra options
186
- if len(extra_options) > 0:
187
- prompt_str += " " + " ".join(extra_options)
188
-
189
- # Add name, length, word_count
190
- prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
191
-
192
- if custom_prompt.strip() != "":
193
- prompt_str = custom_prompt.strip()
194
-
195
- # For debugging
196
- print(f"Prompt: {prompt_str}")
197
-
198
- # Preprocess image
199
- # NOTE: I found the default processor for so400M to have worse results than just using PIL directly
200
- #image = clip_processor(images=input_image, return_tensors='pt').pixel_values
201
- image = input_image.resize((384, 384), Image.LANCZOS)
202
- pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
203
- pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
204
- pixel_values = pixel_values.to('cuda')
205
-
206
- # Embed image
207
- # This results in Batch x Image Tokens x Features
208
- with torch.amp.autocast_mode.autocast('cuda', enabled=True):
209
- vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
210
- embedded_images = image_adapter(vision_outputs.hidden_states)
211
- embedded_images = embedded_images.to('cuda')
212
-
213
- # Build the conversation
214
- convo = [
215
- {
216
- "role": "system",
217
- "content": "You are a helpful image captioner.",
218
- },
219
- {
220
- "role": "user",
221
- "content": prompt_str,
222
- },
223
- ]
224
-
225
- # Format the conversation
226
- convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
227
- assert isinstance(convo_string, str)
228
-
229
- # Tokenize the conversation
230
- # prompt_str is tokenized separately so we can do the calculations below
231
- convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
232
- prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
233
- assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
234
- convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
235
- prompt_tokens = prompt_tokens.squeeze(0)
236
-
237
- # Calculate where to inject the image
238
- eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
239
- assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
240
-
241
- preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt
242
-
243
- # Embed the tokens
244
- convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to('cuda'))
245
-
246
- # Construct the input
247
- input_embeds = torch.cat([
248
- convo_embeds[:, :preamble_len], # Part before the prompt
249
- embedded_images.to(dtype=convo_embeds.dtype), # Image
250
- convo_embeds[:, preamble_len:], # The prompt and anything after it
251
- ], dim=1).to('cuda')
252
-
253
- input_ids = torch.cat([
254
- convo_tokens[:preamble_len].unsqueeze(0),
255
- torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), # Dummy tokens for the image (TODO: Should probably use a special token here so as not to confuse any generation algorithms that might be inspecting the input)
256
- convo_tokens[preamble_len:].unsqueeze(0),
257
- ], dim=1).to('cuda')
258
- attention_mask = torch.ones_like(input_ids)
259
-
260
- # Debugging
261
- print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
262
-
263
- #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
264
- #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
265
- generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9
266
-
267
- # Trim off the prompt
268
- generate_ids = generate_ids[:, input_ids.shape[1]:]
269
- if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
270
- generate_ids = generate_ids[:, :-1]
271
-
272
- caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
273
-
274
- return prompt_str, caption.strip()
275
-
276
-
277
- with gr.Blocks() as demo:
278
- gr.HTML(TITLE)
279
-
280
- with gr.Row():
281
- with gr.Column():
282
- input_image = gr.Image(type="pil", label="Input Image")
283
-
284
- caption_type = gr.Dropdown(
285
- choices=["Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney", "Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing", "Social Media Post"],
286
- label="Caption Type",
287
- value="Descriptive",
288
- )
289
-
290
- caption_length = gr.Dropdown(
291
- choices=["any", "very short", "short", "medium-length", "long", "very long"] +
292
- [str(i) for i in range(20, 261, 10)],
293
- label="Caption Length",
294
- value="long",
295
- )
296
-
297
- extra_options = gr.CheckboxGroup(
298
- choices=[
299
- "If there is a person/character in the image you must refer to them as {name}.",
300
- "Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
301
- "Include information about lighting.",
302
- "Include information about camera angle.",
303
- "Include information about whether there is a watermark or not.",
304
- "Include information about whether there are JPEG artifacts or not.",
305
- "If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
306
- "Do NOT include anything sexual; keep it PG.",
307
- "Do NOT mention the image's resolution.",
308
- "You MUST include information about the subjective aesthetic quality of the image from low to very high.",
309
- "Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
310
- "Do NOT mention any text that is in the image.",
311
- "Specify the depth of field and whether the background is in focus or blurred.",
312
- "If applicable, mention the likely use of artificial or natural lighting sources.",
313
- "Do NOT use any ambiguous language.",
314
- "Include whether the image is sfw, suggestive, or nsfw.",
315
- "ONLY describe the most important elements of the image."
316
- ],
317
- label="Extra Options"
318
- )
319
-
320
- name_input = gr.Textbox(label="Person/Character Name (if applicable)")
321
- gr.Markdown("**Note:** Name input is only used if an Extra Option is selected that requires it.")
322
-
323
- custom_prompt = gr.Textbox(label="Custom Prompt (optional, will override all other settings)")
324
- gr.Markdown("**Note:** Alpha Two is not a general instruction follower and will not follow prompts outside its training data well. Use this feature with caution.")
325
-
326
- run_button = gr.Button("Caption")
327
-
328
- with gr.Column():
329
- output_prompt = gr.Textbox(label="Prompt that was used")
330
- output_caption = gr.Textbox(label="Caption")
331
-
332
- run_button.click(fn=stream_chat, inputs=[input_image, caption_type, caption_length, extra_options, name_input, custom_prompt], outputs=[output_prompt, output_caption])
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
 
335
  if __name__ == "__main__":
336
- demo.launch()
 
 
 
 
1
+ #dark_mode_4bit_gui
2
+ import sys
3
+ import os
 
 
 
4
  import torch
5
+ from torch import nn
6
+ from transformers import (
7
+ AutoModel,
8
+ AutoProcessor,
9
+ AutoTokenizer,
10
+ PreTrainedTokenizer,
11
+ PreTrainedTokenizerFast,
12
+ AutoModelForCausalLM,
13
+ BitsAndBytesConfig,
14
+ )
15
  from PIL import Image
 
16
  import torchvision.transforms.functional as TVF
17
+ import contextlib
18
+ from typing import Union, List
19
+ from pathlib import Path
20
 
21
+ from PyQt5.QtWidgets import (
22
+ QApplication,
23
+ QWidget,
24
+ QLabel,
25
+ QPushButton,
26
+ QFileDialog,
27
+ QLineEdit,
28
+ QTextEdit,
29
+ QComboBox,
30
+ QVBoxLayout,
31
+ QHBoxLayout,
32
+ QCheckBox,
33
+ QListWidget,
34
+ QListWidgetItem,
35
+ QMessageBox,
36
+ QSizePolicy,
37
+ )
38
+ from PyQt5.QtGui import QPixmap, QIcon
39
+ from PyQt5.QtCore import Qt
40
+
41
+ # Constants and Mappings
42
  CLIP_PATH = "google/siglip-so400m-patch14-384"
 
 
43
  CAPTION_TYPE_MAP = {
44
+ "Descriptive": [
45
+ "Write a descriptive caption for this image in a formal tone.",
46
+ "Write a descriptive caption for this image in a formal tone within {word_count} words.",
47
+ "Write a {length} descriptive caption for this image in a formal tone.",
48
+ ],
49
+ "Descriptive (Informal)": [
50
+ "Write a descriptive caption for this image in a casual tone.",
51
+ "Write a descriptive caption for this image in a casual tone within {word_count} words.",
52
+ "Write a {length} descriptive caption for this image in a casual tone.",
53
+ ],
54
+ "Training Prompt": [
55
+ "Write a stable diffusion prompt for this image.",
56
+ "Write a stable diffusion prompt for this image within {word_count} words.",
57
+ "Write a {length} stable diffusion prompt for this image.",
58
+ ],
59
+ "MidJourney": [
60
+ "Write a MidJourney prompt for this image.",
61
+ "Write a MidJourney prompt for this image within {word_count} words.",
62
+ "Write a {length} MidJourney prompt for this image.",
63
+ ],
64
+ "Booru tag list": [
65
+ "Write a list of Booru tags for this image.",
66
+ "Write a list of Booru tags for this image within {word_count} words.",
67
+ "Write a {length} list of Booru tags for this image.",
68
+ ],
69
+ "Booru-like tag list": [
70
+ "Write a list of Booru-like tags for this image.",
71
+ "Write a list of Booru-like tags for this image within {word_count} words.",
72
+ "Write a {length} list of Booru-like tags for this image.",
73
+ ],
74
+ "Art Critic": [
75
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
76
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
77
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
78
+ ],
79
+ "Product Listing": [
80
+ "Write a caption for this image as though it were a product listing.",
81
+ "Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
82
+ "Write a {length} caption for this image as though it were a product listing.",
83
+ ],
84
+ "Social Media Post": [
85
+ "Write a caption for this image as if it were being used for a social media post.",
86
+ "Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
87
+ "Write a {length} caption for this image as if it were being used for a social media post.",
88
+ ],
89
  }
90
 
91
+ EXTRA_OPTIONS_LIST = [
92
+ "If there is a person/character in the image you must refer to them as {name}.",
93
+ "Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
94
+ "Include information about lighting.",
95
+ "Include information about camera angle.",
96
+ "Include information about whether there is a watermark or not.",
97
+ "Include information about whether there are JPEG artifacts or not.",
98
+ "If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
99
+ "Do NOT include anything sexual; keep it PG.",
100
+ "Do NOT mention the image's resolution.",
101
+ "You MUST include information about the subjective aesthetic quality of the image from low to very high.",
102
+ "Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
103
+ "Do NOT mention any text that is in the image.",
104
+ "Specify the depth of field and whether the background is in focus or blurred.",
105
+ "If applicable, mention the likely use of artificial or natural lighting sources.",
106
+ "Do NOT use any ambiguous language.",
107
+ "Include whether the image is sfw, suggestive, or nsfw.",
108
+ "ONLY describe the most important elements of the image.",
109
+ ]
110
+
111
+ CAPTION_LENGTH_CHOICES = (
112
+ ["any", "very short", "short", "medium-length", "long", "very long"]
113
+ + [str(i) for i in range(20, 261, 10)]
114
+ )
115
+
116
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
117
 
118
+ # Determine the device to use (GPU if available, else CPU)
119
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
120
+ if device.type == "cuda":
121
+ torch_dtype = torch.bfloat16 # or torch.float16 based on compatibility
122
+ else:
123
+ torch_dtype = torch.float32
124
+
125
+ # Update autocast usage
126
+ if device.type == "cuda":
127
+ autocast = lambda: torch.amp.autocast(device_type='cuda', dtype=torch_dtype)
128
+ else:
129
+ autocast = contextlib.nullcontext # No autocasting on CPU
130
 
131
  class ImageAdapter(nn.Module):
132
+ def __init__(
133
+ self,
134
+ input_features: int,
135
+ output_features: int,
136
+ ln1: bool,
137
+ pos_emb: bool,
138
+ num_image_tokens: int,
139
+ deep_extract: bool,
140
+ ):
141
+ super().__init__()
142
+ self.deep_extract = deep_extract
143
+
144
+ if self.deep_extract:
145
+ input_features = input_features * 5
146
+
147
+ self.linear1 = nn.Linear(input_features, output_features)
148
+ self.activation = nn.GELU()
149
+ self.linear2 = nn.Linear(output_features, output_features)
150
+ self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
151
+ self.pos_emb = (
152
+ None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
153
+ )
154
+
155
+ # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
156
+ self.other_tokens = nn.Embedding(3, output_features)
157
+ self.other_tokens.weight.data.normal_(
158
+ mean=0.0, std=0.02
159
+ ) # Matches HF's implementation of llama3
160
+
161
+ def forward(self, vision_outputs: torch.Tensor):
162
+ if self.deep_extract:
163
+ x = torch.concat(
164
+ (
165
+ vision_outputs[-2],
166
+ vision_outputs[3],
167
+ vision_outputs[7],
168
+ vision_outputs[13],
169
+ vision_outputs[20],
170
+ ),
171
+ dim=-1,
172
+ )
173
+ assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
174
+ assert (
175
+ x.shape[-1] == vision_outputs[-2].shape[-1] * 5
176
+ ), f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
177
+ else:
178
+ x = vision_outputs[-2]
179
+
180
+ x = self.ln1(x)
181
+
182
+ if self.pos_emb is not None:
183
+ assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
184
+ x = x + self.pos_emb
185
+
186
+ x = self.linear1(x)
187
+ x = self.activation(x)
188
+ x = self.linear2(x)
189
+
190
+ # <|image_start|>, IMAGE, <|image_end|>
191
+ other_tokens = self.other_tokens(
192
+ torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)
193
+ )
194
+ assert other_tokens.shape == (
195
+ x.shape[0],
196
+ 2,
197
+ x.shape[2],
198
+ ), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
199
+ x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
200
+
201
+ return x
202
+
203
+ def get_eot_embedding(self):
204
+ return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
205
+
206
+ def load_models(CHECKPOINT_PATH):
207
+ # Load CLIP
208
+ print("Loading CLIP")
209
+ clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
210
+ clip_model = AutoModel.from_pretrained(CLIP_PATH)
211
+ clip_model = clip_model.vision_model
212
+
213
+ assert (
214
+ CHECKPOINT_PATH / "clip_model.pt"
215
+ ).exists(), f"clip_model.pt not found in {CHECKPOINT_PATH}"
216
+ print("Loading VLM's custom vision model")
217
+ checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location="cpu")
218
+ checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
219
+ clip_model.load_state_dict(checkpoint)
220
+ del checkpoint
221
+
222
+ clip_model.eval()
223
+ clip_model.requires_grad_(False)
224
+ clip_model.to(device)
225
+
226
+ # Tokenizer
227
+ print("Loading tokenizer")
228
+ tokenizer = AutoTokenizer.from_pretrained(
229
+ CHECKPOINT_PATH / "text_model", use_fast=True
230
+ )
231
+ assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
232
+
233
+ # Add special tokens to the tokenizer
234
+ special_tokens_dict = {'additional_special_tokens': ['<|system|>', '<|user|>', '<|end|>', '<|eot_id|>']}
235
+ num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
236
+ print(f"Added {num_added_toks} special tokens.")
237
+
238
+ # LLM with 4-bit quantization
239
+ print("Loading LLM with 4-bit quantization")
240
+ text_model = AutoModelForCausalLM.from_pretrained(
241
+ CHECKPOINT_PATH / "text_model",
242
+ device_map="auto",
243
+ quantization_config=BitsAndBytesConfig(
244
+ load_in_4bit=True,
245
+ bnb_4bit_use_double_quant=True,
246
+ bnb_4bit_quant_type='nf4',
247
+ bnb_4bit_compute_dtype=torch.float16
248
+ )
249
+ )
250
+ text_model.eval()
251
+ # Removed text_model.to(device)
252
+
253
+ # Resize token embeddings if new tokens were added
254
+ if num_added_toks > 0:
255
+ text_model.resize_token_embeddings(len(tokenizer))
256
+
257
+ # Image Adapter
258
+ print("Loading image adapter")
259
+ image_adapter = ImageAdapter(
260
+ clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False
261
+ )
262
+ image_adapter.load_state_dict(
263
+ torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
264
+ )
265
+ image_adapter.eval()
266
+ image_adapter.to(device) # image_adapter is not quantized, so it's okay
267
+
268
+ return clip_processor, clip_model, tokenizer, text_model, image_adapter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
+ @torch.no_grad()
271
+ def generate_caption(
272
+ input_image: Image.Image,
273
+ caption_type: str,
274
+ caption_length: Union[str, int],
275
+ extra_options: List[str],
276
+ name_input: str,
277
+ custom_prompt: str,
278
+ clip_model,
279
+ tokenizer,
280
+ text_model,
281
+ image_adapter,
282
+ ) -> tuple:
283
+ if device.type == "cuda":
284
+ torch.cuda.empty_cache()
285
+
286
+ # If a custom prompt is provided, use it directly
287
+ if custom_prompt.strip() != "":
288
+ prompt_str = custom_prompt.strip()
289
+ else:
290
+ # 'any' means no length specified
291
+ length = None if caption_length == "any" else caption_length
292
+
293
+ if isinstance(length, str):
294
+ try:
295
+ length = int(length)
296
+ except ValueError:
297
+ pass
298
+
299
+ # Build prompt
300
+ if length is None:
301
+ map_idx = 0
302
+ elif isinstance(length, int):
303
+ map_idx = 1
304
+ elif isinstance(length, str):
305
+ map_idx = 2
306
+ else:
307
+ raise ValueError(f"Invalid caption length: {length}")
308
+
309
+ prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
310
+
311
+ # Add extra options
312
+ if len(extra_options) > 0:
313
+ prompt_str += " " + " ".join(extra_options)
314
+
315
+ # Add name, length, word_count
316
+ prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
317
+
318
+ # For debugging
319
+ print(f"Prompt: {prompt_str}")
320
+
321
+ # Preprocess image
322
+ image = input_image.resize((384, 384), Image.LANCZOS)
323
+ pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
324
+ pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
325
+ pixel_values = pixel_values.to(device)
326
+
327
+ # Embed image
328
+ # This results in Batch x Image Tokens x Features
329
+ with autocast():
330
+ vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
331
+ embedded_images = image_adapter(vision_outputs.hidden_states)
332
+ embedded_images = embedded_images.to(device)
333
+
334
+ # Build the conversation
335
+ convo = [
336
+ {
337
+ "role": "system",
338
+ "content": "You are a helpful image captioner.",
339
+ },
340
+ {
341
+ "role": "user",
342
+ "content": prompt_str,
343
+ },
344
+ ]
345
+
346
+ # Format the conversation
347
+ # The apply_chat_template method might not be available; handle accordingly
348
+ if hasattr(tokenizer, "apply_chat_template"):
349
+ convo_string = tokenizer.apply_chat_template(
350
+ convo, tokenize=False, add_generation_prompt=True
351
+ )
352
+ else:
353
+ # Simple concatenation if apply_chat_template is not available
354
+ convo_string = (
355
+ "<|system|>\n" + convo[0]["content"] + "\n<|end|>\n<|user|>\n" + convo[1]["content"] + "\n<|end|>\n"
356
+ )
357
+
358
+ assert isinstance(convo_string, str)
359
+
360
+ # Tokenize the conversation
361
+ # prompt_str is tokenized separately so we can do the calculations below
362
+ convo_tokens = tokenizer.encode(
363
+ convo_string, return_tensors="pt", add_special_tokens=False, truncation=False
364
+ ).to(device)
365
+ prompt_tokens = tokenizer.encode(
366
+ prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False
367
+ ).to(device)
368
+ assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
369
+ convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
370
+ prompt_tokens = prompt_tokens.squeeze(0)
371
+
372
+ # Calculate where to inject the image
373
+ # Use the indices of the special tokens
374
+ end_token_id = tokenizer.convert_tokens_to_ids("<|end|>")
375
+
376
+ # Ensure end_token_id is valid
377
+ if end_token_id is None:
378
+ raise ValueError("The tokenizer does not recognize the '<|end|>' token. Please ensure special tokens are added.")
379
+
380
+ end_token_indices = (convo_tokens == end_token_id).nonzero(as_tuple=True)[0].tolist()
381
+ if len(end_token_indices) >= 2:
382
+ # The image is to be injected between the system message and the user prompt
383
+ preamble_len = end_token_indices[0] + 1 # Position after the first <|end|>
384
+ else:
385
+ preamble_len = 0 # Fallback to the start if tokens are missing
386
+
387
+ # Embed the tokens
388
+ convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device))
389
+
390
+ # Construct the input
391
+ input_embeds = torch.cat(
392
+ [
393
+ convo_embeds[:, :preamble_len], # Part before the prompt
394
+ embedded_images.to(dtype=convo_embeds.dtype), # Image embeddings
395
+ convo_embeds[:, preamble_len:], # The prompt and anything after it
396
+ ],
397
+ dim=1,
398
+ ).to(device)
399
+
400
+ input_ids = torch.cat(
401
+ [
402
+ convo_tokens[:preamble_len].unsqueeze(0),
403
+ torch.full((1, embedded_images.shape[1]), tokenizer.pad_token_id, dtype=torch.long, device=device), # Dummy tokens for the image
404
+ convo_tokens[preamble_len:].unsqueeze(0),
405
+ ],
406
+ dim=1,
407
+ ).to(device)
408
+ attention_mask = torch.ones_like(input_ids).to(device)
409
+
410
+ # Debugging
411
+ print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
412
+
413
+ # Generate the caption
414
+ generate_ids = text_model.generate(
415
+ input_ids=input_ids,
416
+ inputs_embeds=input_embeds,
417
+ attention_mask=attention_mask,
418
+ max_new_tokens=300,
419
+ do_sample=True,
420
+ temperature=0.6,
421
+ top_p=0.9,
422
+ suppress_tokens=None,
423
+ )
424
+
425
+ # Trim off the prompt
426
+ generate_ids = generate_ids[:, input_ids.shape[1]:]
427
+ if generate_ids[0][-1] in [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")]:
428
+ generate_ids = generate_ids[:, :-1]
429
+
430
+ caption = tokenizer.batch_decode(
431
+ generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
432
+ )[0]
433
+
434
+ return prompt_str, caption.strip()
435
+
436
+ class CaptionApp(QWidget):
437
+ def __init__(self):
438
+ super().__init__()
439
+ self.setWindowTitle("JoyCaption Alpha Two")
440
+ self.setGeometry(100, 100, 1200, 800)
441
+
442
+ # Set minimum size to maintain GUI consistency
443
+ self.setMinimumSize(1000, 700)
444
+
445
+ self.initUI()
446
+
447
+ # Initialize model variables
448
+ self.clip_processor = None
449
+ self.clip_model = None
450
+ self.tokenizer = None
451
+ self.text_model = None
452
+ self.image_adapter = None
453
+
454
+ # Initialize variables for selected images
455
+ self.input_dir = None
456
+ self.single_image_path = None
457
+ self.selected_image_path = None
458
+
459
+ # Theme variables
460
+ self.dark_mode = False
461
+
462
+ def initUI(self):
463
+ main_layout = QHBoxLayout()
464
+
465
+ # Left panel for parameters
466
+ left_panel = QVBoxLayout()
467
+
468
+ # Input directory selection
469
+ self.input_dir_button = QPushButton("Select Input Directory")
470
+ self.input_dir_button.clicked.connect(self.select_input_directory)
471
+ self.input_dir_label = QLabel("No directory selected")
472
+ left_panel.addWidget(self.input_dir_button)
473
+ left_panel.addWidget(self.input_dir_label)
474
+
475
+ # Single image selection
476
+ self.single_image_button = QPushButton("Select Single Image")
477
+ self.single_image_button.clicked.connect(self.select_single_image)
478
+ self.single_image_label = QLabel("No image selected")
479
+ left_panel.addWidget(self.single_image_button)
480
+ left_panel.addWidget(self.single_image_label)
481
+
482
+ # Caption Type
483
+ self.caption_type_combo = QComboBox()
484
+ self.caption_type_combo.addItems(CAPTION_TYPE_MAP.keys())
485
+ self.caption_type_combo.setCurrentText("Descriptive")
486
+ left_panel.addWidget(QLabel("Caption Type:"))
487
+ left_panel.addWidget(self.caption_type_combo)
488
+
489
+ # Caption Length
490
+ self.caption_length_combo = QComboBox()
491
+ self.caption_length_combo.addItems(CAPTION_LENGTH_CHOICES)
492
+ self.caption_length_combo.setCurrentText("long")
493
+ left_panel.addWidget(QLabel("Caption Length:"))
494
+ left_panel.addWidget(self.caption_length_combo)
495
+
496
+ # Extra Options
497
+ left_panel.addWidget(QLabel("Extra Options:"))
498
+ self.extra_options_checkboxes = []
499
+ for option in EXTRA_OPTIONS_LIST:
500
+ checkbox = QCheckBox(option)
501
+ self.extra_options_checkboxes.append(checkbox)
502
+ left_panel.addWidget(checkbox)
503
+
504
+ # Name Input
505
+ self.name_input_line = QLineEdit()
506
+ left_panel.addWidget(QLabel("Person/Character Name (if applicable):"))
507
+ left_panel.addWidget(self.name_input_line)
508
+
509
+ # Custom Prompt
510
+ self.custom_prompt_text = QTextEdit()
511
+ left_panel.addWidget(QLabel("Custom Prompt (optional):"))
512
+ left_panel.addWidget(self.custom_prompt_text)
513
+
514
+ # Checkpoint Path
515
+ self.checkpoint_path_line = QLineEdit()
516
+ self.checkpoint_path_line.setText("cgrkzexw-599808") # Update this path accordingly
517
+ left_panel.addWidget(QLabel("Checkpoint Path:"))
518
+ left_panel.addWidget(self.checkpoint_path_line)
519
+
520
+ # Load Models Button
521
+ self.load_models_button = QPushButton("Load Models")
522
+ self.load_models_button.clicked.connect(self.load_models)
523
+ left_panel.addWidget(self.load_models_button)
524
+
525
+ # Run Buttons
526
+ self.run_button = QPushButton("Generate Captions for All Images")
527
+ self.run_button.clicked.connect(self.generate_captions)
528
+ left_panel.addWidget(self.run_button)
529
+
530
+ self.caption_selected_button = QPushButton("Caption Selected Image")
531
+ self.caption_selected_button.clicked.connect(self.caption_selected_image)
532
+ self.caption_selected_button.setEnabled(False) # Disabled until an image is selected
533
+ left_panel.addWidget(self.caption_selected_button)
534
+
535
+ self.caption_single_button = QPushButton("Caption Single Image")
536
+ self.caption_single_button.clicked.connect(self.caption_single_image)
537
+ self.caption_single_button.setEnabled(False) # Disabled until a single image is selected
538
+ left_panel.addWidget(self.caption_single_button)
539
+
540
+ # Theme Toggle Button
541
+ self.toggle_theme_button = QPushButton("Toggle Dark Mode")
542
+ self.toggle_theme_button.clicked.connect(self.toggle_theme)
543
+ left_panel.addWidget(self.toggle_theme_button)
544
+
545
+ # Right panel for image display and captions
546
+ right_panel = QVBoxLayout()
547
+
548
+ # List widget for images
549
+ self.image_list_widget = QListWidget()
550
+ self.image_list_widget.itemClicked.connect(self.display_selected_image)
551
+ right_panel.addWidget(QLabel("Images:"))
552
+ right_panel.addWidget(self.image_list_widget)
553
+
554
+ # Label to display the selected image
555
+ self.selected_image_label = QLabel()
556
+ self.selected_image_label.setAlignment(Qt.AlignCenter)
557
+
558
+ # Set size policy to expanding to utilize available space
559
+ self.selected_image_label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
560
+ self.selected_image_label.setMinimumSize(400, 400) # Set a reasonable minimum size
561
+
562
+ right_panel.addWidget(QLabel("Selected Image:"))
563
+ right_panel.addWidget(self.selected_image_label)
564
+
565
+ # Adjust stretch factors to allocate more space to the image label
566
+ main_layout.addLayout(left_panel, 2)
567
+ main_layout.addLayout(right_panel, 5) # Increased stretch factor for right_panel
568
+ self.setLayout(main_layout)
569
+
570
+ def toggle_theme(self):
571
+ if self.dark_mode:
572
+ self.setStyleSheet("") # Reset to default
573
+ self.dark_mode = False
574
+ else:
575
+ # Apply dark theme stylesheet with adjusted properties
576
+ self.setStyleSheet("""
577
+ QWidget {
578
+ background-color: #2E2E2E;
579
+ color: #FFFFFF;
580
+ font-family: Arial, sans-serif;
581
+ /* Removed font-size to prevent resizing */
582
+ }
583
+ QPushButton {
584
+ background-color: #3A3A3A;
585
+ color: #FFFFFF;
586
+ border: none;
587
+ padding: 5px; /* Keep padding minimal */
588
+ }
589
+ QPushButton:hover {
590
+ background-color: #555555;
591
+ }
592
+ QLabel {
593
+ color: #FFFFFF;
594
+ }
595
+ QLineEdit, QTextEdit, QComboBox {
596
+ background-color: #3A3A3A;
597
+ color: #FFFFFF;
598
+ border: 1px solid #555555;
599
+ padding: 5px; /* Keep padding minimal */
600
+ }
601
+ QListWidget {
602
+ background-color: #3A3A3A;
603
+ color: #FFFFFF;
604
+ border: 1px solid #555555;
605
+ }
606
+ QCheckBox {
607
+ color: #FFFFFF;
608
+ }
609
+ """)
610
+ self.dark_mode = True
611
+
612
+ def select_input_directory(self):
613
+ directory = QFileDialog.getExistingDirectory(self, "Select Input Directory")
614
+ if directory:
615
+ self.input_dir = Path(directory)
616
+ self.input_dir_label.setText(str(self.input_dir))
617
+ self.load_images()
618
+ else:
619
+ self.input_dir_label.setText("No directory selected")
620
+ self.input_dir = None
621
+
622
+ def select_single_image(self):
623
+ file_filter = "Image Files (*.jpg *.jpeg *.png *.bmp *.gif *.tiff)"
624
+ file_path, _ = QFileDialog.getOpenFileName(self, "Select Single Image", "", file_filter)
625
+ if file_path:
626
+ self.single_image_path = Path(file_path)
627
+ self.single_image_label.setText(str(self.single_image_path.name))
628
+ self.display_image(self.single_image_path)
629
+ self.caption_single_button.setEnabled(True)
630
+ else:
631
+ self.single_image_label.setText("No image selected")
632
+ self.single_image_path = None
633
+ self.caption_single_button.setEnabled(False)
634
+
635
+ def load_images(self):
636
+ # List of image file extensions
637
+ image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
638
+
639
+ # Collect all image files in the directory
640
+ self.image_files = [f for f in self.input_dir.iterdir() if f.suffix.lower() in image_extensions]
641
+
642
+ if not self.image_files:
643
+ QMessageBox.warning(self, "No Images", "No image files found in the selected directory.")
644
+ return
645
+
646
+ self.image_list_widget.clear()
647
+ for image_path in self.image_files:
648
+ item = QListWidgetItem(str(image_path.name))
649
+ pixmap = QPixmap(str(image_path))
650
+ if not pixmap.isNull():
651
+ # Increase thumbnail size
652
+ scaled_pixmap = pixmap.scaled(150, 150, Qt.KeepAspectRatio, Qt.SmoothTransformation)
653
+ icon = QIcon(scaled_pixmap)
654
+ item.setIcon(icon)
655
+ self.image_list_widget.addItem(item)
656
+
657
+ def display_selected_image(self, item):
658
+ # Get the selected image path
659
+ image_name = item.text()
660
+ image_path = self.input_dir / image_name
661
+ pixmap = QPixmap(str(image_path))
662
+ if not pixmap.isNull():
663
+ # Scale the pixmap to fit the label while preserving aspect ratio
664
+ scaled_pixmap = pixmap.scaled(
665
+ self.selected_image_label.size(),
666
+ Qt.KeepAspectRatio,
667
+ Qt.SmoothTransformation
668
+ )
669
+ self.selected_image_label.setPixmap(scaled_pixmap)
670
+ self.caption_selected_button.setEnabled(True)
671
+ self.selected_image_path = image_path
672
+ else:
673
+ self.selected_image_label.clear()
674
+ self.caption_selected_button.setEnabled(False)
675
+ self.selected_image_path = None
676
+
677
+ def display_image(self, image_path):
678
+ pixmap = QPixmap(str(image_path))
679
+ if not pixmap.isNull():
680
+ # Scale the pixmap to fit the label while preserving aspect ratio
681
+ scaled_pixmap = pixmap.scaled(
682
+ self.selected_image_label.size(),
683
+ Qt.KeepAspectRatio,
684
+ Qt.SmoothTransformation
685
+ )
686
+ self.selected_image_label.setPixmap(scaled_pixmap)
687
+ else:
688
+ self.selected_image_label.clear()
689
+
690
+ def load_models(self):
691
+ checkpoint_path = Path(self.checkpoint_path_line.text())
692
+ if not checkpoint_path.exists():
693
+ QMessageBox.warning(self, "Checkpoint Error", f"Checkpoint path does not exist: {checkpoint_path}")
694
+ return
695
+
696
+ try:
697
+ (
698
+ self.clip_processor,
699
+ self.clip_model,
700
+ self.tokenizer,
701
+ self.text_model,
702
+ self.image_adapter,
703
+ ) = load_models(checkpoint_path)
704
+ QMessageBox.information(self, "Models Loaded", "Models have been loaded successfully.")
705
+ except Exception as e:
706
+ QMessageBox.critical(self, "Model Loading Error", f"An error occurred while loading models: {e}")
707
+
708
+ def collect_parameters(self):
709
+ # Collect parameters for caption generation
710
+ caption_type = self.caption_type_combo.currentText()
711
+ caption_length = self.caption_length_combo.currentText()
712
+ extra_options = [checkbox.text() for checkbox in self.extra_options_checkboxes if checkbox.isChecked()]
713
+ name_input = self.name_input_line.text()
714
+ custom_prompt = self.custom_prompt_text.toPlainText()
715
+
716
+ return caption_type, caption_length, extra_options, name_input, custom_prompt
717
+
718
+ def generate_captions(self):
719
+ # Determine which images to process
720
+ if hasattr(self, 'input_image_path') and self.input_image_path is not None:
721
+ image_paths = [self.input_image_path]
722
+ elif hasattr(self, 'image_files') and self.image_files:
723
+ image_paths = self.image_files
724
+ else:
725
+ QMessageBox.warning(self, "No Images", "Please select an image or directory containing images.")
726
+ return
727
+
728
+ if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
729
+ QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
730
+ return
731
+
732
+ # Collect parameters
733
+ caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
734
+
735
+ # Process each image
736
+ for image_path in image_paths:
737
+ print(f"\nProcessing image: {image_path}")
738
+ input_image = Image.open(image_path).convert("RGB")
739
+
740
+ try:
741
+ prompt_str, caption = generate_caption(
742
+ input_image,
743
+ caption_type,
744
+ caption_length,
745
+ extra_options,
746
+ name_input,
747
+ custom_prompt,
748
+ self.clip_model,
749
+ self.tokenizer,
750
+ self.text_model,
751
+ self.image_adapter,
752
+ )
753
+
754
+ # Save the caption in a text file with the same name as the image
755
+ caption_file = image_path.with_suffix('.txt')
756
+ with open(caption_file, 'w', encoding='utf-8') as f:
757
+ # Just write the caption
758
+ f.write(f"{caption}\n")
759
+
760
+ print(f"Caption saved to {caption_file}")
761
+
762
+ except Exception as e:
763
+ print(f"Error processing image {image_path}: {e}")
764
+ continue
765
+
766
+ QMessageBox.information(self, "Captions Generated", "Captions have been generated and saved.")
767
+
768
+ def caption_selected_image(self):
769
+ if not self.selected_image_path:
770
+ QMessageBox.warning(self, "No Image Selected", "Please select an image from the list.")
771
+ return
772
+
773
+ if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
774
+ QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
775
+ return
776
+
777
+ caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
778
+
779
+ print(f"\nProcessing image: {self.selected_image_path}")
780
+ input_image = Image.open(self.selected_image_path).convert("RGB")
781
+
782
+ try:
783
+ prompt_str, caption = generate_caption(
784
+ input_image,
785
+ caption_type,
786
+ caption_length,
787
+ extra_options,
788
+ name_input,
789
+ custom_prompt,
790
+ self.clip_model,
791
+ self.tokenizer,
792
+ self.text_model,
793
+ self.image_adapter,
794
+ )
795
+
796
+ # Save the caption in a text file with the same name as the image
797
+ caption_file = self.selected_image_path.with_suffix('.txt')
798
+ with open(caption_file, 'w', encoding='utf-8') as f:
799
+ # Just write the caption
800
+ f.write(f"{caption}\n")
801
+
802
+ print(f"Caption saved to {caption_file}")
803
+
804
+ except Exception as e:
805
+ print(f"Error processing image {self.selected_image_path}: {e}")
806
+ QMessageBox.critical(self, "Error", f"An error occurred: {e}")
807
+ return
808
+
809
+ QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.selected_image_path.name}.")
810
+
811
+ def caption_single_image(self):
812
+ if not self.single_image_path:
813
+ QMessageBox.warning(self, "No Image Selected", "Please select a single image.")
814
+ return
815
+
816
+ if not all([self.clip_processor, self.clip_model, self.tokenizer, self.text_model, self.image_adapter]):
817
+ QMessageBox.warning(self, "Models Not Loaded", "Please load the models before generating captions.")
818
+ return
819
+
820
+ caption_type, caption_length, extra_options, name_input, custom_prompt = self.collect_parameters()
821
+
822
+ print(f"\nProcessing image: {self.single_image_path}")
823
+ input_image = Image.open(self.single_image_path).convert("RGB")
824
+
825
+ try:
826
+ prompt_str, caption = generate_caption(
827
+ input_image,
828
+ caption_type,
829
+ caption_length,
830
+ extra_options,
831
+ name_input,
832
+ custom_prompt,
833
+ self.clip_model,
834
+ self.tokenizer,
835
+ self.text_model,
836
+ self.image_adapter,
837
+ )
838
+
839
+ # Save the caption in a text file with the same name as the image
840
+ caption_file = self.single_image_path.with_suffix('.txt')
841
+ with open(caption_file, 'w', encoding='utf-8') as f:
842
+ # Just write the caption
843
+ f.write(f"{caption}\n")
844
+
845
+ print(f"Caption saved to {caption_file}")
846
+
847
+ except Exception as e:
848
+ print(f"Error processing image {self.single_image_path}: {e}")
849
+ QMessageBox.critical(self, "Error", f"An error occurred: {e}")
850
+ return
851
+
852
+ QMessageBox.information(self, "Caption Generated", f"Caption has been generated and saved for {self.single_image_path.name}.")
853
+
854
+ def resizeEvent(self, event):
855
+ super().resizeEvent(event)
856
+ if self.selected_image_path and self.selected_image_label.pixmap():
857
+ pixmap = QPixmap(str(self.selected_image_path))
858
+ if not pixmap.isNull():
859
+ # Rescale the pixmap to fit the label size
860
+ scaled_pixmap = pixmap.scaled(
861
+ self.selected_image_label.size(),
862
+ Qt.KeepAspectRatio,
863
+ Qt.SmoothTransformation
864
+ )
865
+ self.selected_image_label.setPixmap(scaled_pixmap)
866
 
867
  if __name__ == "__main__":
868
+ app = QApplication(sys.argv)
869
+ window = CaptionApp()
870
+ window.show()
871
+ sys.exit(app.exec_())