Spaces:
Sleeping
Sleeping
File size: 1,064 Bytes
ada5f8b 3863cf2 0abd32f ada5f8b 73a1a84 ada5f8b 3863cf2 ada5f8b 3863cf2 ada5f8b 3863cf2 ada5f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import pipeline
import gradio as gr
# import io
# import IPython.display
from PIL import Image
# import base64
get_completion = pipeline("image-to-text",model="nlpconnect/vit-gpt2-image-captioning")
def summarize(input):
output = get_completion(input)
return output[0]['generated_text']
import gradio as gr
# def image_to_base64_str(pil_image):
# byte_arr = io.BytesIO()
# pil_image.save(byte_arr, format='PNG')
# byte_arr = byte_arr.getvalue()
# return str(base64.b64encode(byte_arr).decode('utf-8'))
def captioner(image):
# base64_image = image_to_base64_str(image)
result = get_completion(image)
return result[0]['generated_text']
gr.close_all()
demo = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
title="Image Captioning with BLIP",
description="Caption any image using the BLIP model",
allow_flagging="never")
demo.launch() |