tbdavid2019 commited on
Commit
0dbb99d
·
1 Parent(s): 23fd152
Files changed (4) hide show
  1. .gitignore +3 -0
  2. README.md +40 -0
  3. app.py +224 -0
  4. requirements.txt +9 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __pycache__/
2
+ .env
3
+ myenv/
README.md CHANGED
@@ -11,3 +11,43 @@ short_description: 透過即時新聞/財報/和股價 ,幫你評估股票值
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ ---
17
+
18
+
19
+ # 股票基本面分析系統
20
+
21
+ 這是一個使用 AI 技術的股票基本面分析系統,能夠提供:
22
+ - 股價走勢分析
23
+ - 技術指標分析
24
+ - 財務比率分析
25
+ - 新聞分析
26
+ - 產業分析
27
+ - 競爭對手分析
28
+
29
+ ## 使用方式
30
+ 1. 輸入股票代號(例如:2330.TW)
31
+ 2. 選擇想要分析的資料期間(3個月、6個月或1年)
32
+ 3. 等待系統生成分析報告
33
+
34
+ ## 環境設置
35
+ 系統需要設置以下環境變數:
36
+ - OPENAI_API_KEY:OpenAI API 金鑰
37
+
38
+ ## 本地運行
39
+ ```bash
40
+ # 建立虛擬環境
41
+ python -m venv venv
42
+
43
+ # 啟動虛擬環境
44
+ # Windows:
45
+ venv\Scripts\activate
46
+ # Linux/Mac:
47
+ source venv/bin/activate
48
+
49
+ # 安裝依賴
50
+ pip install -r requirements.txt
51
+
52
+ # 運行應用
53
+ python app.py
app.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datetime as dt
3
+ import yfinance as yf
4
+ import traceback
5
+ import json
6
+ from typing import Union, Dict
7
+
8
+ import gradio as gr
9
+ from langchain_openai import ChatOpenAI
10
+ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
11
+
12
+ from ta.momentum import RSIIndicator, StochasticOscillator
13
+ from ta.trend import MACD
14
+ from ta.volume import volume_weighted_average_price
15
+
16
+ import dotenv
17
+ dotenv.load_dotenv()
18
+
19
+ FUNDAMENTAL_ANALYST_PROMPT = """
20
+ You are a fundamental analyst specializing in evaluating company (whose symbol is {company}) performance based on stock prices, technical indicators, financial metrics, recent news, industry trends, competitor positioning, and financial ratios. Your task is to provide a comprehensive summary.
21
+
22
+ You have access to the following tools:
23
+ 1. **get_stock_prices**: Retrieves stock price data and technical indicators.
24
+ 2. **get_financial_metrics**: Retrieves key financial metrics and financial ratios.
25
+ 3. **get_financial_news**: Retrieves the latest financial news related to the stock.
26
+ 4. **get_industry_data** *(if available)*: Retrieves industry trends and competitive positioning information.
27
+
28
+ ---
29
+
30
+ ### Your Task:
31
+ 1. Use the provided stock symbol to query the tools.
32
+ 2. Analyze the following areas in sequence:
33
+ - **Stock price movements and technical indicators**: Examine recent price trends, volatility, and signals from RSI, MACD, VWAP, and other indicators.
34
+ - **Financial health and key financial ratios**: Assess profitability, liquidity, solvency, and operational efficiency using metrics such as:
35
+ - Profitability Ratios: Gross Profit Margin, Net Profit Margin, Operating Profit Margin
36
+ - Liquidity Ratios: Current Ratio, Quick Ratio
37
+ - Solvency Ratios: Debt-to-Equity Ratio, Interest Coverage Ratio
38
+ - Efficiency Ratios: Inventory Turnover, Accounts Receivable Turnover
39
+ - Market Ratios: Price-to-Earnings Ratio (P/E), Price-to-Book Ratio (P/B)
40
+ - **Recent news and market sentiment**: Identify significant events or trends impacting the company's market perception.
41
+ - **Industry analysis**: Evaluate the industry’s growth trends, technological advancements, and regulatory environment. Identify how the industry is evolving and how it affects the target company.
42
+ - **Competitor analysis**: Compare the target company with key competitors in terms of market share, financial health, and growth potential.
43
+
44
+ 3. Provide a concise and structured summary covering all sections, ensuring each area has actionable insights.
45
+
46
+ ---
47
+
48
+ ### Output Format : 以下請用繁體中文輸出
49
+ {
50
+ "stock": "",
51
+ "price_analysis": "<股票價格趨勢與技術指標分析>",
52
+ "technical_analysis": "<技術指標分析與見解>",
53
+ "financial_analysis": {
54
+ "profitability_ratios": "<獲利能力比率分析>",
55
+ "liquidity_ratios": "<流動性比率分析>",
56
+ "solvency_ratios": "<償債能力比率分析>",
57
+ "efficiency_ratios": "<營運效率比率分析>",
58
+ "market_ratios": "<市場表現比率分析>",
59
+ "summary": "<財務整體健康狀況與分析結論>"
60
+ },
61
+ "news_analysis": "<近期新聞摘要與其對股價的潛在影響>",
62
+ "industry_analysis": "<產業趨勢、成長動力與潛在風險>",
63
+ "competitor_analysis": "<主要競爭對手比較與市場地位分析>",
64
+ "final_summary": "<整體綜合結論與投資建議>",
65
+ "Asked Question Answer": "<根據上述分析的具體回答>"
66
+ }
67
+ """
68
+
69
+ def period_to_start_end(period_str: str):
70
+ """
71
+ 根據使用者選擇的時間區間,計算起始與結束日期。
72
+ """
73
+ now = dt.datetime.now()
74
+ if period_str == "3mo":
75
+ start = now - dt.timedelta(weeks=13)
76
+ elif period_str == "6mo":
77
+ start = now - dt.timedelta(weeks=26)
78
+ elif period_str == "1yr":
79
+ start = now - dt.timedelta(weeks=52)
80
+ else:
81
+ start = now - dt.timedelta(weeks=13)
82
+ return start, now
83
+
84
+ # --- 取得股票價格與技術指標 ---
85
+ def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
86
+ """
87
+ 使用 start 與 end 取得歷史股價資料(避免連線到 fc.yahoo.com),
88
+ 並計算 RSI、Stochastic、MACD 與 VWAP 指標。
89
+ """
90
+ try:
91
+ start_date, end_date = period_to_start_end(period)
92
+ data = yf.download(
93
+ ticker,
94
+ start=start_date,
95
+ end=end_date,
96
+ interval='1d'
97
+ )
98
+ df = data.copy()
99
+ # 若有 multi-index,調整欄位名稱
100
+ if df.columns.nlevels > 1:
101
+ df.columns = [col[0] for col in df.columns]
102
+ data.reset_index(inplace=True)
103
+ data['Date'] = data['Date'].astype(str)
104
+
105
+ indicators = {}
106
+
107
+ # RSI
108
+ rsi_series = RSIIndicator(df['Close'], window=14).rsi().iloc[-12:]
109
+ indicators["RSI"] = {date.strftime('%Y-%m-%d'): int(value) for date, value in rsi_series.dropna().to_dict().items()}
110
+
111
+ # Stochastic Oscillator
112
+ sto_series = StochasticOscillator(df['High'], df['Low'], df['Close'], window=14).stoch().iloc[-12:]
113
+ indicators["Stochastic_Oscillator"] = {date.strftime('%Y-%m-%d'): int(value) for date, value in sto_series.dropna().to_dict().items()}
114
+
115
+ # MACD 與訊號線
116
+ macd = MACD(df['Close'])
117
+ macd_series = macd.macd().iloc[-12:]
118
+ indicators["MACD"] = {date.strftime('%Y-%m-%d'): int(value) for date, value in macd_series.to_dict().items()}
119
+ macd_signal_series = macd.macd_signal().iloc[-12:]
120
+ indicators["MACD_Signal"] = {date.strftime('%Y-%m-%d'): int(value) for date, value in macd_signal_series.to_dict().items()}
121
+
122
+ # VWAP
123
+ vwap_series = volume_weighted_average_price(
124
+ high=df['High'],
125
+ low=df['Low'],
126
+ close=df['Close'],
127
+ volume=df['Volume']
128
+ ).iloc[-12:]
129
+ indicators["vwap"] = {date.strftime('%Y-%m-%d'): int(value) for date, value in vwap_series.to_dict().items()}
130
+
131
+ return {'stock_price': data.to_dict(orient='records'), 'indicators': indicators}
132
+ except Exception as e:
133
+ return f"Error fetching price data: {str(e)}"
134
+
135
+ # --- 取得財務新聞 ---
136
+ def get_financial_news(ticker: str) -> Union[Dict, str]:
137
+ try:
138
+ stock = yf.Ticker(ticker)
139
+ news = stock.news
140
+ if not news:
141
+ return {"news": "No recent news found."}
142
+ latest_news = [
143
+ {
144
+ "title": item.get('title'),
145
+ "publisher": item.get('publisher'),
146
+ "link": item.get('link'),
147
+ "published_date": item.get('providerPublishTime')
148
+ }
149
+ for item in news[:5]
150
+ ]
151
+ return {"news": latest_news}
152
+ except Exception as e:
153
+ return f"Error fetching news: {str(e)}"
154
+
155
+ # --- 取得財務指標 ---
156
+ def get_financial_metrics(ticker: str) -> Union[Dict, str]:
157
+ try:
158
+ stock = yf.Ticker(ticker)
159
+ info = stock.info
160
+ return {
161
+ 'pe_ratio': info.get('forwardPE'),
162
+ 'price_to_book': info.get('priceToBook'),
163
+ 'debt_to_equity': info.get('debtToEquity'),
164
+ 'profit_margins': info.get('profitMargins')
165
+ }
166
+ except Exception as e:
167
+ return f"Error fetching ratios: {str(e)}"
168
+
169
+ # --- 綜合基本面分析 ---
170
+ def analyze_stock(api_key: str, ticker: str, period: str) -> str:
171
+ """
172
+ 根據輸入的 LLM API key、股票代號與時間區間,抓取各項資料後,
173
+ 組合成分析 Prompt 呼叫 LLM,最後回傳基本面分析結果。
174
+ """
175
+ try:
176
+ # 建立 LLM 實例
177
+ llm = ChatOpenAI(
178
+ model='gpt-4o',
179
+ openai_api_key=api_key,
180
+ temperature=0
181
+ )
182
+ # 取得資料
183
+ price_data = get_stock_prices(ticker, period)
184
+ metrics = get_financial_metrics(ticker)
185
+ news = get_financial_news(ticker)
186
+
187
+ # 準備 prompt
188
+ prompt = FUNDAMENTAL_ANALYST_PROMPT.replace("{company}", ticker)
189
+ user_question = "Should I buy this stock?"
190
+ analysis_prompt = f"""
191
+ 根據以下 {ticker} 的資料,進行全面的基本面分析並回答使用者問題:"{user_question}"
192
+
193
+ 股價與技術指標資料:
194
+ {json.dumps(price_data, ensure_ascii=False, indent=2)}
195
+
196
+ 財務指標:
197
+ {json.dumps(metrics, ensure_ascii=False, indent=2)}
198
+
199
+ 相關新聞:
200
+ {json.dumps(news, ensure_ascii=False, indent=2)}
201
+
202
+ {prompt}
203
+ """
204
+ # 呼叫 LLM 生成最終分析報告
205
+ response = llm.invoke(analysis_prompt)
206
+ return response.content
207
+ except Exception as e:
208
+ return f"分析過程中發生錯誤: {str(e)}\n{traceback.format_exc()}"
209
+
210
+ # --- Gradio 介面 ---
211
+ iface = gr.Interface(
212
+ fn=analyze_stock,
213
+ inputs=[
214
+ gr.Textbox(label="LLM API Key", type="password", placeholder="請輸入 OpenAI API Key"),
215
+ gr.Textbox(label="股票代號", placeholder="例如:TSLA 或 2330.TW"),
216
+ gr.Dropdown(choices=["3mo", "6mo", "1yr"], label="時間區間", value="3mo")
217
+ ],
218
+ outputs=gr.Textbox(label="基本面分析結果"),
219
+ title="股票基本面分析 App",
220
+ description="輸入您的 LLM API key、股票代號與時間區間,取得該股票的基本面分析報告。"
221
+ )
222
+
223
+ if __name__ == "__main__":
224
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ yfinance
3
+ ta
4
+ langchain
5
+ langchain-openai
6
+ openai
7
+ python-dotenv
8
+ pandas
9
+ numpy