Spaces:
Running
Running
Commit
·
76e906f
1
Parent(s):
cdf1418
o1
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ from ta.volume import volume_weighted_average_price
|
|
16 |
import dotenv
|
17 |
dotenv.load_dotenv()
|
18 |
|
|
|
19 |
FUNDAMENTAL_ANALYST_PROMPT = """
|
20 |
You are a fundamental analyst specializing in evaluating company (whose symbol is {company}) performance based on stock prices, technical indicators, financial metrics, recent news, industry trends, competitor positioning, and financial ratios. Your task is to provide a comprehensive summary.
|
21 |
|
@@ -32,11 +33,11 @@ You have access to the following tools:
|
|
32 |
2. Analyze the following areas in sequence:
|
33 |
- **Stock price movements and technical indicators**: Examine recent price trends, volatility, and signals from RSI, MACD, VWAP, and other indicators.
|
34 |
- **Financial health and key financial ratios**: Assess profitability, liquidity, solvency, and operational efficiency using metrics such as:
|
35 |
-
- Profitability Ratios: Gross Profit Margin, Net Profit Margin, Operating Profit Margin
|
36 |
-
- Liquidity Ratios: Current Ratio, Quick Ratio
|
37 |
-
- Solvency Ratios: Debt-to-Equity Ratio, Interest Coverage Ratio
|
38 |
-
- Efficiency Ratios: Inventory Turnover, Accounts Receivable Turnover
|
39 |
-
- Market Ratios: Price-to-Earnings Ratio (P/E), Price-to-Book Ratio (P/B)
|
40 |
- **Recent news and market sentiment**: Identify significant events or trends impacting the company's market perception.
|
41 |
- **Industry analysis**: Evaluate the industry’s growth trends, technological advancements, and regulatory environment. Identify how the industry is evolving and how it affects the target company.
|
42 |
- **Competitor analysis**: Compare the target company with key competitors in terms of market share, financial health, and growth potential.
|
@@ -47,7 +48,7 @@ You have access to the following tools:
|
|
47 |
|
48 |
### Output Format : 以下請用繁體中文輸出
|
49 |
{
|
50 |
-
"stock": "",
|
51 |
"price_analysis": "<股票價格趨勢與技術指標分析>",
|
52 |
"technical_analysis": "<技術指標分析與見解>",
|
53 |
"financial_analysis": {
|
@@ -64,6 +65,14 @@ You have access to the following tools:
|
|
64 |
"final_summary": "<整體綜合結論與投資建議>",
|
65 |
"Asked Question Answer": "<根據上述分析的具體回答>"
|
66 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
|
69 |
def period_to_start_end(period_str: str):
|
@@ -78,12 +87,12 @@ def period_to_start_end(period_str: str):
|
|
78 |
elif period_str == "1yr":
|
79 |
start = now - dt.timedelta(weeks=52)
|
80 |
else:
|
|
|
81 |
start = now - dt.timedelta(weeks=13)
|
82 |
return start, now
|
83 |
|
84 |
-
|
85 |
def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
|
86 |
-
"""Fetches historical stock price data and technical
|
87 |
try:
|
88 |
start, end = period_to_start_end(period)
|
89 |
data = yf.download(
|
@@ -96,7 +105,7 @@ def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
|
|
96 |
if data.empty:
|
97 |
return {"error": f"No stock data found for {ticker}"}
|
98 |
|
99 |
-
#
|
100 |
if data.columns.nlevels > 1:
|
101 |
data.columns = [col[0] for col in data.columns]
|
102 |
|
@@ -105,9 +114,11 @@ def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
|
|
105 |
|
106 |
df = data.copy()
|
107 |
|
108 |
-
|
109 |
n = min(12, len(df))
|
110 |
|
|
|
|
|
111 |
# RSI
|
112 |
rsi_series = RSIIndicator(df['Close'], window=14).rsi().iloc[-n:]
|
113 |
indicators["RSI"] = {
|
@@ -149,7 +160,6 @@ def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
|
|
149 |
except Exception as e:
|
150 |
return f"Error fetching price data: {str(e)}"
|
151 |
|
152 |
-
|
153 |
def get_financial_news(ticker: str) -> Union[Dict, str]:
|
154 |
"""Fetches the latest financial news related to a given ticker."""
|
155 |
try:
|
@@ -171,7 +181,6 @@ def get_financial_news(ticker: str) -> Union[Dict, str]:
|
|
171 |
except Exception as e:
|
172 |
return f"Error fetching news: {str(e)}"
|
173 |
|
174 |
-
|
175 |
def get_financial_metrics(ticker: str) -> Union[Dict, str]:
|
176 |
"""Fetches key financial ratios for a given ticker."""
|
177 |
try:
|
@@ -186,7 +195,6 @@ def get_financial_metrics(ticker: str) -> Union[Dict, str]:
|
|
186 |
except Exception as e:
|
187 |
return f"Error fetching ratios: {str(e)}"
|
188 |
|
189 |
-
# --- 綜合基本面分析 ---
|
190 |
def analyze_stock(api_key: str, ticker: str, period: str) -> str:
|
191 |
"""
|
192 |
根據輸入的 LLM API key、股票代號與時間區間,抓取各項資料後,
|
@@ -199,12 +207,13 @@ def analyze_stock(api_key: str, ticker: str, period: str) -> str:
|
|
199 |
openai_api_key=api_key,
|
200 |
temperature=0
|
201 |
)
|
|
|
202 |
# 取得資料
|
203 |
price_data = get_stock_prices(ticker, period)
|
204 |
metrics = get_financial_metrics(ticker)
|
205 |
news = get_financial_news(ticker)
|
206 |
|
207 |
-
#
|
208 |
prompt = FUNDAMENTAL_ANALYST_PROMPT.replace("{company}", ticker)
|
209 |
user_question = "Should I buy this stock?"
|
210 |
analysis_prompt = f"""
|
@@ -221,9 +230,11 @@ def analyze_stock(api_key: str, ticker: str, period: str) -> str:
|
|
221 |
|
222 |
{prompt}
|
223 |
"""
|
|
|
224 |
# 呼叫 LLM 生成最終分析報告
|
225 |
response = llm.invoke(analysis_prompt)
|
226 |
return response.content
|
|
|
227 |
except Exception as e:
|
228 |
return f"分析過程中發生錯誤: {str(e)}\n{traceback.format_exc()}"
|
229 |
|
|
|
16 |
import dotenv
|
17 |
dotenv.load_dotenv()
|
18 |
|
19 |
+
# --- 新版 Prompt ---
|
20 |
FUNDAMENTAL_ANALYST_PROMPT = """
|
21 |
You are a fundamental analyst specializing in evaluating company (whose symbol is {company}) performance based on stock prices, technical indicators, financial metrics, recent news, industry trends, competitor positioning, and financial ratios. Your task is to provide a comprehensive summary.
|
22 |
|
|
|
33 |
2. Analyze the following areas in sequence:
|
34 |
- **Stock price movements and technical indicators**: Examine recent price trends, volatility, and signals from RSI, MACD, VWAP, and other indicators.
|
35 |
- **Financial health and key financial ratios**: Assess profitability, liquidity, solvency, and operational efficiency using metrics such as:
|
36 |
+
- Profitability Ratios: Gross Profit Margin, Net Profit Margin, Operating Profit Margin
|
37 |
+
- Liquidity Ratios: Current Ratio, Quick Ratio
|
38 |
+
- Solvency Ratios: Debt-to-Equity Ratio, Interest Coverage Ratio
|
39 |
+
- Efficiency Ratios: Inventory Turnover, Accounts Receivable Turnover
|
40 |
+
- Market Ratios: Price-to-Earnings Ratio (P/E), Price-to-Book Ratio (P/B)
|
41 |
- **Recent news and market sentiment**: Identify significant events or trends impacting the company's market perception.
|
42 |
- **Industry analysis**: Evaluate the industry’s growth trends, technological advancements, and regulatory environment. Identify how the industry is evolving and how it affects the target company.
|
43 |
- **Competitor analysis**: Compare the target company with key competitors in terms of market share, financial health, and growth potential.
|
|
|
48 |
|
49 |
### Output Format : 以下請用繁體中文輸出
|
50 |
{
|
51 |
+
"stock": "<Stock Symbol>",
|
52 |
"price_analysis": "<股票價格趨勢與技術指標分析>",
|
53 |
"technical_analysis": "<技術指標分析與見解>",
|
54 |
"financial_analysis": {
|
|
|
65 |
"final_summary": "<整體綜合結論與投資建議>",
|
66 |
"Asked Question Answer": "<根據上述分析的具體回答>"
|
67 |
}
|
68 |
+
|
69 |
+
---
|
70 |
+
|
71 |
+
### Guidelines:
|
72 |
+
- Use the provided tools for data. If any data is unavailable, clearly state so in the respective section.
|
73 |
+
- Ensure the analysis is objective, data-driven, and free of speculative language.
|
74 |
+
- Keep responses concise but informative. Highlight actionable insights and risks.
|
75 |
+
- Output should be structured, easy to read, and in Traditional Chinese.
|
76 |
"""
|
77 |
|
78 |
def period_to_start_end(period_str: str):
|
|
|
87 |
elif period_str == "1yr":
|
88 |
start = now - dt.timedelta(weeks=52)
|
89 |
else:
|
90 |
+
# 若未指定或指定其他值,一律視為 3 個月
|
91 |
start = now - dt.timedelta(weeks=13)
|
92 |
return start, now
|
93 |
|
|
|
94 |
def get_stock_prices(ticker: str, period: str = "3mo") -> Union[Dict, str]:
|
95 |
+
"""Fetches historical stock price data and technical indicators for a given ticker."""
|
96 |
try:
|
97 |
start, end = period_to_start_end(period)
|
98 |
data = yf.download(
|
|
|
105 |
if data.empty:
|
106 |
return {"error": f"No stock data found for {ticker}"}
|
107 |
|
108 |
+
# 處理多層欄位
|
109 |
if data.columns.nlevels > 1:
|
110 |
data.columns = [col[0] for col in data.columns]
|
111 |
|
|
|
114 |
|
115 |
df = data.copy()
|
116 |
|
117 |
+
# 指標只取最後 12 筆即可
|
118 |
n = min(12, len(df))
|
119 |
|
120 |
+
indicators = {}
|
121 |
+
|
122 |
# RSI
|
123 |
rsi_series = RSIIndicator(df['Close'], window=14).rsi().iloc[-n:]
|
124 |
indicators["RSI"] = {
|
|
|
160 |
except Exception as e:
|
161 |
return f"Error fetching price data: {str(e)}"
|
162 |
|
|
|
163 |
def get_financial_news(ticker: str) -> Union[Dict, str]:
|
164 |
"""Fetches the latest financial news related to a given ticker."""
|
165 |
try:
|
|
|
181 |
except Exception as e:
|
182 |
return f"Error fetching news: {str(e)}"
|
183 |
|
|
|
184 |
def get_financial_metrics(ticker: str) -> Union[Dict, str]:
|
185 |
"""Fetches key financial ratios for a given ticker."""
|
186 |
try:
|
|
|
195 |
except Exception as e:
|
196 |
return f"Error fetching ratios: {str(e)}"
|
197 |
|
|
|
198 |
def analyze_stock(api_key: str, ticker: str, period: str) -> str:
|
199 |
"""
|
200 |
根據輸入的 LLM API key、股票代號與時間區間,抓取各項資料後,
|
|
|
207 |
openai_api_key=api_key,
|
208 |
temperature=0
|
209 |
)
|
210 |
+
|
211 |
# 取得資料
|
212 |
price_data = get_stock_prices(ticker, period)
|
213 |
metrics = get_financial_metrics(ticker)
|
214 |
news = get_financial_news(ticker)
|
215 |
|
216 |
+
# 組合 Prompt
|
217 |
prompt = FUNDAMENTAL_ANALYST_PROMPT.replace("{company}", ticker)
|
218 |
user_question = "Should I buy this stock?"
|
219 |
analysis_prompt = f"""
|
|
|
230 |
|
231 |
{prompt}
|
232 |
"""
|
233 |
+
|
234 |
# 呼叫 LLM 生成最終分析報告
|
235 |
response = llm.invoke(analysis_prompt)
|
236 |
return response.content
|
237 |
+
|
238 |
except Exception as e:
|
239 |
return f"分析過程中發生錯誤: {str(e)}\n{traceback.format_exc()}"
|
240 |
|