Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import yfinance as yf | |
from sklearn.preprocessing import MinMaxScaler | |
from keras.models import Sequential | |
from keras.layers import LSTM, Dense, Dropout | |
import gradio as gr | |
import datetime | |
# Function to fetch stock data | |
def get_stock_data(ticker, period): | |
data = yf.download(ticker, period=period) | |
return data | |
# Function to prepare the data for LSTM | |
def prepare_data(data, time_step=60): | |
scaler = MinMaxScaler(feature_range=(0, 1)) | |
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1)) | |
X, y = [], [] | |
for i in range(time_step, len(scaled_data)): | |
X.append(scaled_data[i-time_step:i, 0]) | |
y.append(scaled_data[i, 0]) | |
X, y = np.array(X), np.array(y) | |
X = np.reshape(X, (X.shape[0], X.shape[1], 1)) | |
return X, y, scaler | |
# Function to build and train LSTM model | |
def train_lstm_model(X_train, y_train): | |
model = Sequential() | |
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) | |
model.add(Dropout(0.2)) | |
model.add(LSTM(units=50, return_sequences=False)) | |
model.add(Dropout(0.2)) | |
model.add(Dense(units=1)) | |
model.compile(optimizer='adam', loss='mean_squared_error') | |
model.fit(X_train, y_train, epochs=10, batch_size=32) | |
return model | |
# Function to predict stock prices | |
def predict_stock(model, data, scaler, time_step=60): | |
inputs = scaler.transform(data['Close'].values.reshape(-1, 1)) | |
X_test = [] | |
for i in range(time_step, len(inputs)): | |
X_test.append(inputs[i-time_step:i, 0]) | |
X_test = np.array(X_test) | |
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) | |
predicted_prices = model.predict(X_test) | |
predicted_prices = scaler.inverse_transform(predicted_prices) | |
return predicted_prices | |
# Function to fetch all Taiwan listed stocks (Taiwan 50) | |
def get_all_taiwan_stocks(): | |
return [ | |
"1101.TW", "1216.TW", "1301.TW", "1326.TW", "1402.TW", "2002.TW", "2105.TW", "2207.TW", "2303.TW", "2308.TW", | |
"2317.TW", "2327.TW", "2330.TW", "2352.TW", "2357.TW", "2382.TW", "2408.TW", "2412.TW", "2454.TW", "2474.TW", | |
"2603.TW", "2609.TW", "2615.TW", "2633.TW", "2801.TW", "2880.TW", "2881.TW", "2882.TW", "2883.TW", "2884.TW", | |
"2885.TW", "2886.TW", "2891.TW", "2892.TW", "2912.TW", "3008.TW", "3045.TW", "3231.TW", "3439.TW", "4938.TW", | |
"5880.TW", "6505.TW", "9910.TW", "1210.TW", "1227.TW", "1229.TW", "1232.TW", "1256.TW", "1314.TW", "1321.TW" | |
] | |
# Function to get top 10 potential stocks | |
def get_top_10_potential_stocks(period): | |
stock_list = get_all_taiwan_stocks() | |
stock_predictions = [] | |
for ticker in stock_list: | |
data = get_stock_data(ticker, period) | |
if data.empty: | |
continue | |
# Prepare data | |
X_train, y_train, scaler = prepare_data(data) | |
# Train model | |
model = train_lstm_model(X_train, y_train) | |
# Predict future prices | |
predicted_prices = predict_stock(model, data, scaler) | |
# Calculate the potential (e.g., last predicted price vs last actual price) | |
potential = (predicted_prices[-1] - data['Close'].values[-1]) / data['Close'].values[-1] | |
stock_predictions.append((ticker, potential, data['Close'].values[-1], predicted_prices[-1][0])) | |
# Sort by potential and get top 10 | |
top_10_stocks = sorted(stock_predictions, key=lambda x: x[1], reverse=True)[:10] | |
return top_10_stocks | |
# Gradio interface function | |
def stock_prediction_app(period): | |
# Get top 10 potential stocks | |
top_10_stocks = get_top_10_potential_stocks(period) | |
# Create a dataframe for display | |
df = pd.DataFrame(top_10_stocks, columns=["股票代號", "潛力 (百分比)", "現價", "預測價格"]) | |
return df | |
# Define Gradio interface | |
inputs = gr.Dropdown(choices=["1mo", "3mo", "6mo", "9mo", "1yr"], label="時間範圍") | |
outputs = gr.Dataframe(label="潛力股推薦結果") | |
gr.Interface(fn=stock_prediction_app, inputs=inputs, outputs=outputs, title="台股潛力股推薦系統 - LSTM模型")\ | |
.launch() |