import numpy as np import pandas as pd import yfinance as yf from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import LSTM, Dense, Dropout import gradio as gr import datetime # Function to fetch stock data def get_stock_data(ticker, period): data = yf.download(ticker, period=period) return data # Function to prepare the data for LSTM def prepare_data(data, time_step=60): scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1)) X, y = [], [] for i in range(time_step, len(scaled_data)): X.append(scaled_data[i-time_step:i, 0]) y.append(scaled_data[i, 0]) X, y = np.array(X), np.array(y) X = np.reshape(X, (X.shape[0], X.shape[1], 1)) return X, y, scaler # Function to build and train LSTM model def train_lstm_model(X_train, y_train): model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, y_train, epochs=10, batch_size=32) return model # Function to predict stock prices def predict_stock(model, data, scaler, time_step=60): inputs = scaler.transform(data['Close'].values.reshape(-1, 1)) X_test = [] for i in range(time_step, len(inputs)): X_test.append(inputs[i-time_step:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_prices = model.predict(X_test) predicted_prices = scaler.inverse_transform(predicted_prices) return predicted_prices # Function to fetch all Taiwan listed stocks (Taiwan 50) def get_all_taiwan_stocks(): return [ "1101.TW", "1216.TW", "1301.TW", "1326.TW", "1402.TW", "2002.TW", "2105.TW", "2207.TW", "2303.TW", "2308.TW", "2317.TW", "2327.TW", "2330.TW", "2352.TW", "2357.TW", "2382.TW", "2408.TW", "2412.TW", "2454.TW", "2474.TW", "2603.TW", "2609.TW", "2615.TW", "2633.TW", "2801.TW", "2880.TW", "2881.TW", "2882.TW", "2883.TW", "2884.TW", "2885.TW", "2886.TW", "2891.TW", "2892.TW", "2912.TW", "3008.TW", "3045.TW", "3231.TW", "3439.TW", "4938.TW", "5880.TW", "6505.TW", "9910.TW", "1210.TW", "1227.TW", "1229.TW", "1232.TW", "1256.TW", "1314.TW", "1321.TW" ] # Function to get top 10 potential stocks def get_top_10_potential_stocks(period): stock_list = get_all_taiwan_stocks() stock_predictions = [] for ticker in stock_list: data = get_stock_data(ticker, period) if data.empty: continue # Prepare data X_train, y_train, scaler = prepare_data(data) # Train model model = train_lstm_model(X_train, y_train) # Predict future prices predicted_prices = predict_stock(model, data, scaler) # Calculate the potential (e.g., last predicted price vs last actual price) potential = (predicted_prices[-1] - data['Close'].values[-1]) / data['Close'].values[-1] stock_predictions.append((ticker, potential, data['Close'].values[-1], predicted_prices[-1][0])) # Sort by potential and get top 10 top_10_stocks = sorted(stock_predictions, key=lambda x: x[1], reverse=True)[:10] return top_10_stocks # Gradio interface function def stock_prediction_app(period): # Get top 10 potential stocks top_10_stocks = get_top_10_potential_stocks(period) # Create a dataframe for display df = pd.DataFrame(top_10_stocks, columns=["股票代號", "潛力 (百分比)", "現價", "預測價格"]) return df # Define Gradio interface inputs = gr.Dropdown(choices=["1mo", "3mo", "6mo", "9mo", "1yr"], label="時間範圍") outputs = gr.Dataframe(label="潛力股推薦結果") gr.Interface(fn=stock_prediction_app, inputs=inputs, outputs=outputs, title="台股潛力股推薦系統 - LSTM模型")\ .launch()