Spaces:
Running
Running
Commit
·
1ddba8e
1
Parent(s):
d425aca
bug443
Browse files
app.py
CHANGED
@@ -7,14 +7,15 @@ from sklearn.preprocessing import MinMaxScaler
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
-
|
11 |
-
import
|
12 |
-
import yfinance as yf
|
13 |
-
import logging
|
14 |
-
import tempfile
|
15 |
-
import os
|
16 |
import matplotlib as mpl
|
17 |
import matplotlib.font_manager as fm
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# 設置日誌
|
20 |
logging.basicConfig(level=logging.INFO,
|
@@ -90,11 +91,11 @@ class StockPredictor:
|
|
90 |
scaled_data = self.scaler.fit_transform(df[selected_features])
|
91 |
|
92 |
X, y = [], []
|
93 |
-
for i in range(len(scaled_data) -
|
94 |
-
X.append(scaled_data[i
|
95 |
-
y.append(scaled_data[i+
|
96 |
|
97 |
-
return np.array(X), np.array(y)
|
98 |
|
99 |
def build_model(self, input_shape):
|
100 |
model = Sequential([
|
@@ -109,7 +110,7 @@ class StockPredictor:
|
|
109 |
|
110 |
def train(self, df, selected_features):
|
111 |
X, y = self.prepare_data(df, selected_features)
|
112 |
-
self.model = self.build_model((
|
113 |
history = self.model.fit(
|
114 |
X, y,
|
115 |
epochs=50,
|
@@ -124,10 +125,12 @@ class StockPredictor:
|
|
124 |
current_data = last_data.copy()
|
125 |
|
126 |
for _ in range(n_days):
|
127 |
-
next_day = self.model.predict(current_data.reshape(1,
|
128 |
predictions.append(next_day[0])
|
129 |
|
130 |
-
current_data =
|
|
|
|
|
131 |
|
132 |
return np.array(predictions)
|
133 |
|
@@ -195,19 +198,19 @@ def update_stock(category, stock):
|
|
195 |
|
196 |
def predict_stock(category, stock, stock_item, period, selected_features):
|
197 |
if not all([category, stock, stock_item]):
|
198 |
-
return None, "請選擇產業類別、類股和股票"
|
199 |
|
200 |
try:
|
201 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
202 |
if item['類股'] == stock), None)
|
203 |
if not url:
|
204 |
-
return None, "無法獲取類股網址"
|
205 |
|
206 |
stock_items = get_stock_items(url)
|
207 |
stock_code = stock_items.get(stock_item, "")
|
208 |
|
209 |
if not stock_code:
|
210 |
-
return None, "無法獲取股票代碼"
|
211 |
|
212 |
# 下載股票數據,根據用戶選擇的時間範圍
|
213 |
df = yf.download(stock_code, period=period)
|
@@ -218,35 +221,45 @@ def predict_stock(category, stock, stock_item, period, selected_features):
|
|
218 |
predictor = StockPredictor()
|
219 |
predictor.train(df, selected_features)
|
220 |
|
221 |
-
last_data = predictor.scaler.transform(df[selected_features].iloc[-
|
222 |
-
predictions = predictor.predict(last_data, 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# 創建日期索引
|
225 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
226 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
227 |
|
228 |
-
#
|
229 |
-
fig =
|
230 |
-
|
231 |
-
|
232 |
-
x=date_labels,
|
233 |
-
y=np.hstack([df[feature].iloc[-1], predictions[:, i]]),
|
234 |
-
mode='lines+markers',
|
235 |
-
name=f'預測{feature}'
|
236 |
-
))
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
|
|
246 |
|
247 |
except Exception as e:
|
248 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
249 |
-
return None, f"預測過程發生錯誤: {str(e)}"
|
250 |
|
251 |
# 初始化
|
252 |
setup_font()
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import io
|
|
|
|
|
|
|
|
|
12 |
import matplotlib as mpl
|
13 |
import matplotlib.font_manager as fm
|
14 |
+
import tempfile
|
15 |
+
import os
|
16 |
+
import yfinance as yf
|
17 |
+
import logging
|
18 |
+
from datetime import datetime, timedelta
|
19 |
|
20 |
# 設置日誌
|
21 |
logging.basicConfig(level=logging.INFO,
|
|
|
91 |
scaled_data = self.scaler.fit_transform(df[selected_features])
|
92 |
|
93 |
X, y = [], []
|
94 |
+
for i in range(len(scaled_data) - 1):
|
95 |
+
X.append(scaled_data[i])
|
96 |
+
y.append(scaled_data[i+1])
|
97 |
|
98 |
+
return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
|
99 |
|
100 |
def build_model(self, input_shape):
|
101 |
model = Sequential([
|
|
|
110 |
|
111 |
def train(self, df, selected_features):
|
112 |
X, y = self.prepare_data(df, selected_features)
|
113 |
+
self.model = self.build_model((1, X.shape[2]))
|
114 |
history = self.model.fit(
|
115 |
X, y,
|
116 |
epochs=50,
|
|
|
125 |
current_data = last_data.copy()
|
126 |
|
127 |
for _ in range(n_days):
|
128 |
+
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
129 |
predictions.append(next_day[0])
|
130 |
|
131 |
+
current_data = current_data.flatten()
|
132 |
+
current_data[:len(next_day[0])] = next_day[0]
|
133 |
+
current_data = current_data.reshape(1, -1)
|
134 |
|
135 |
return np.array(predictions)
|
136 |
|
|
|
198 |
|
199 |
def predict_stock(category, stock, stock_item, period, selected_features):
|
200 |
if not all([category, stock, stock_item]):
|
201 |
+
return gr.update(value=None), "請選擇產業類別、類股和股票"
|
202 |
|
203 |
try:
|
204 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
205 |
if item['類股'] == stock), None)
|
206 |
if not url:
|
207 |
+
return gr.update(value=None), "無法獲取類股網址"
|
208 |
|
209 |
stock_items = get_stock_items(url)
|
210 |
stock_code = stock_items.get(stock_item, "")
|
211 |
|
212 |
if not stock_code:
|
213 |
+
return gr.update(value=None), "無法獲取股票代碼"
|
214 |
|
215 |
# 下載股票數據,根據用戶選擇的時間範圍
|
216 |
df = yf.download(stock_code, period=period)
|
|
|
221 |
predictor = StockPredictor()
|
222 |
predictor.train(df, selected_features)
|
223 |
|
224 |
+
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
225 |
+
predictions = predictor.predict(last_data[0], 5)
|
226 |
+
|
227 |
+
# 反轉預測結果
|
228 |
+
last_original = df[selected_features].iloc[-1].values
|
229 |
+
predictions_original = predictor.scaler.inverse_transform(
|
230 |
+
np.vstack([last_data, predictions])
|
231 |
+
)
|
232 |
+
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
233 |
|
234 |
# 創建日期索引
|
235 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
236 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
237 |
|
238 |
+
# 繪圖
|
239 |
+
fig, ax = plt.subplots(figsize=(14, 7))
|
240 |
+
colors = ['#FF9999', '#66B2FF']
|
241 |
+
labels = [f'預測{feature}' for feature in selected_features]
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
for i, (label, color) in enumerate(zip(labels, colors)):
|
244 |
+
ax.plot(date_labels, all_predictions[:, i], label=label,
|
245 |
+
marker='o', color=color, linewidth=2)
|
246 |
+
for j, value in enumerate(all_predictions[:, i]):
|
247 |
+
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
248 |
+
textcoords="offset points", xytext=(0,10),
|
249 |
+
ha='center', va='bottom')
|
250 |
+
|
251 |
+
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
252 |
+
ax.set_xlabel('日期', labelpad=10)
|
253 |
+
ax.set_ylabel('股價', labelpad=10)
|
254 |
+
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
255 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
256 |
|
257 |
+
plt.tight_layout()
|
258 |
+
return gr.update(value=fig), "預測成功"
|
259 |
|
260 |
except Exception as e:
|
261 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
262 |
+
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
263 |
|
264 |
# 初始化
|
265 |
setup_font()
|