tbdavid2019 commited on
Commit
1ddba8e
·
1 Parent(s): d425aca
Files changed (1) hide show
  1. app.py +48 -35
app.py CHANGED
@@ -7,14 +7,15 @@ from sklearn.preprocessing import MinMaxScaler
7
  from tensorflow.keras.models import Sequential
8
  from tensorflow.keras.layers import LSTM, Dense, Dropout
9
  from tensorflow.keras.optimizers import Adam
10
- from datetime import datetime, timedelta
11
- import plotly.graph_objs as go
12
- import yfinance as yf
13
- import logging
14
- import tempfile
15
- import os
16
  import matplotlib as mpl
17
  import matplotlib.font_manager as fm
 
 
 
 
 
18
 
19
  # 設置日誌
20
  logging.basicConfig(level=logging.INFO,
@@ -90,11 +91,11 @@ class StockPredictor:
90
  scaled_data = self.scaler.fit_transform(df[selected_features])
91
 
92
  X, y = [], []
93
- for i in range(len(scaled_data) - 5):
94
- X.append(scaled_data[i:i+5])
95
- y.append(scaled_data[i+5])
96
 
97
- return np.array(X), np.array(y)
98
 
99
  def build_model(self, input_shape):
100
  model = Sequential([
@@ -109,7 +110,7 @@ class StockPredictor:
109
 
110
  def train(self, df, selected_features):
111
  X, y = self.prepare_data(df, selected_features)
112
- self.model = self.build_model((X.shape[1], X.shape[2]))
113
  history = self.model.fit(
114
  X, y,
115
  epochs=50,
@@ -124,10 +125,12 @@ class StockPredictor:
124
  current_data = last_data.copy()
125
 
126
  for _ in range(n_days):
127
- next_day = self.model.predict(current_data.reshape(1, current_data.shape[0], current_data.shape[1]), verbose=0)
128
  predictions.append(next_day[0])
129
 
130
- current_data = np.vstack([current_data[1:], next_day])
 
 
131
 
132
  return np.array(predictions)
133
 
@@ -195,19 +198,19 @@ def update_stock(category, stock):
195
 
196
  def predict_stock(category, stock, stock_item, period, selected_features):
197
  if not all([category, stock, stock_item]):
198
- return None, "請選擇產業類別、類股和股票"
199
 
200
  try:
201
  url = next((item['網址'] for item in category_dict.get(category, [])
202
  if item['類股'] == stock), None)
203
  if not url:
204
- return None, "無法獲取類股網址"
205
 
206
  stock_items = get_stock_items(url)
207
  stock_code = stock_items.get(stock_item, "")
208
 
209
  if not stock_code:
210
- return None, "無法獲取股票代碼"
211
 
212
  # 下載股票數據,根據用戶選擇的時間範圍
213
  df = yf.download(stock_code, period=period)
@@ -218,35 +221,45 @@ def predict_stock(category, stock, stock_item, period, selected_features):
218
  predictor = StockPredictor()
219
  predictor.train(df, selected_features)
220
 
221
- last_data = predictor.scaler.transform(df[selected_features].iloc[-5:])
222
- predictions = predictor.predict(last_data, 5)
 
 
 
 
 
 
 
223
 
224
  # 創建日期索引
225
  dates = [datetime.now() + timedelta(days=i) for i in range(6)]
226
  date_labels = [d.strftime('%m/%d') for d in dates]
227
 
228
- # 用 Plotly 繪圖
229
- fig = go.Figure()
230
- for i, feature in enumerate(selected_features):
231
- fig.add_trace(go.Scatter(
232
- x=date_labels,
233
- y=np.hstack([df[feature].iloc[-1], predictions[:, i]]),
234
- mode='lines+markers',
235
- name=f'預測{feature}'
236
- ))
237
 
238
- fig.update_layout(
239
- title=f'{stock_item} 股價預測 (未來5天)',
240
- xaxis_title='日期',
241
- yaxis_title='股價',
242
- template='plotly_dark'
243
- )
 
 
 
 
 
 
 
244
 
245
- return fig, "預測成功"
 
246
 
247
  except Exception as e:
248
  logging.error(f"預測過程發生錯誤: {str(e)}")
249
- return None, f"預測過程發生錯誤: {str(e)}"
250
 
251
  # 初始化
252
  setup_font()
 
7
  from tensorflow.keras.models import Sequential
8
  from tensorflow.keras.layers import LSTM, Dense, Dropout
9
  from tensorflow.keras.optimizers import Adam
10
+ import matplotlib.pyplot as plt
11
+ import io
 
 
 
 
12
  import matplotlib as mpl
13
  import matplotlib.font_manager as fm
14
+ import tempfile
15
+ import os
16
+ import yfinance as yf
17
+ import logging
18
+ from datetime import datetime, timedelta
19
 
20
  # 設置日誌
21
  logging.basicConfig(level=logging.INFO,
 
91
  scaled_data = self.scaler.fit_transform(df[selected_features])
92
 
93
  X, y = [], []
94
+ for i in range(len(scaled_data) - 1):
95
+ X.append(scaled_data[i])
96
+ y.append(scaled_data[i+1])
97
 
98
+ return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
99
 
100
  def build_model(self, input_shape):
101
  model = Sequential([
 
110
 
111
  def train(self, df, selected_features):
112
  X, y = self.prepare_data(df, selected_features)
113
+ self.model = self.build_model((1, X.shape[2]))
114
  history = self.model.fit(
115
  X, y,
116
  epochs=50,
 
125
  current_data = last_data.copy()
126
 
127
  for _ in range(n_days):
128
+ next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
129
  predictions.append(next_day[0])
130
 
131
+ current_data = current_data.flatten()
132
+ current_data[:len(next_day[0])] = next_day[0]
133
+ current_data = current_data.reshape(1, -1)
134
 
135
  return np.array(predictions)
136
 
 
198
 
199
  def predict_stock(category, stock, stock_item, period, selected_features):
200
  if not all([category, stock, stock_item]):
201
+ return gr.update(value=None), "請選擇產業類別、類股和股票"
202
 
203
  try:
204
  url = next((item['網址'] for item in category_dict.get(category, [])
205
  if item['類股'] == stock), None)
206
  if not url:
207
+ return gr.update(value=None), "無法獲取類股網址"
208
 
209
  stock_items = get_stock_items(url)
210
  stock_code = stock_items.get(stock_item, "")
211
 
212
  if not stock_code:
213
+ return gr.update(value=None), "無法獲取股票代碼"
214
 
215
  # 下載股票數據,根據用戶選擇的時間範圍
216
  df = yf.download(stock_code, period=period)
 
221
  predictor = StockPredictor()
222
  predictor.train(df, selected_features)
223
 
224
+ last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
225
+ predictions = predictor.predict(last_data[0], 5)
226
+
227
+ # 反轉預測結果
228
+ last_original = df[selected_features].iloc[-1].values
229
+ predictions_original = predictor.scaler.inverse_transform(
230
+ np.vstack([last_data, predictions])
231
+ )
232
+ all_predictions = np.vstack([last_original, predictions_original[1:]])
233
 
234
  # 創建日期索引
235
  dates = [datetime.now() + timedelta(days=i) for i in range(6)]
236
  date_labels = [d.strftime('%m/%d') for d in dates]
237
 
238
+ # 繪圖
239
+ fig, ax = plt.subplots(figsize=(14, 7))
240
+ colors = ['#FF9999', '#66B2FF']
241
+ labels = [f'預測{feature}' for feature in selected_features]
 
 
 
 
 
242
 
243
+ for i, (label, color) in enumerate(zip(labels, colors)):
244
+ ax.plot(date_labels, all_predictions[:, i], label=label,
245
+ marker='o', color=color, linewidth=2)
246
+ for j, value in enumerate(all_predictions[:, i]):
247
+ ax.annotate(f'{value:.2f}', (date_labels[j], value),
248
+ textcoords="offset points", xytext=(0,10),
249
+ ha='center', va='bottom')
250
+
251
+ ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
252
+ ax.set_xlabel('日期', labelpad=10)
253
+ ax.set_ylabel('股價', labelpad=10)
254
+ ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
255
+ ax.grid(True, linestyle='--', alpha=0.7)
256
 
257
+ plt.tight_layout()
258
+ return gr.update(value=fig), "預測成功"
259
 
260
  except Exception as e:
261
  logging.error(f"預測過程發生錯誤: {str(e)}")
262
+ return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
263
 
264
  # 初始化
265
  setup_font()