tbdavid2019 commited on
Commit
2da62f5
·
1 Parent(s): e79c8a9
Files changed (1) hide show
  1. app.py +31 -28
app.py CHANGED
@@ -20,7 +20,7 @@ from prophet import Prophet
20
 
21
  # 設置日誌
22
  logging.basicConfig(level=logging.INFO,
23
- format='%(asctime)s - %(levelname)s - %(message)s')
24
 
25
  # 字體設置
26
  def setup_font():
@@ -124,20 +124,10 @@ class StockPredictor:
124
  current_data = current_data.reshape(1, -1)
125
  return np.array(predictions)
126
 
127
- def train_prophet(self, df, target_column='Close'):
128
- df_prophet = df.reset_index()[['Date', target_column]].rename(columns={'Date': 'ds', target_column: 'y'})
129
  self.prophet_model = Prophet()
130
  self.prophet_model.fit(df_prophet)
131
-
132
- def predict_prophet(self, df, days=5):
133
- if self.prophet_model is None:
134
- raise ValueError("Prophet model has not been trained yet.")
135
-
136
- future = self.prophet_model.make_future_dataframe(periods=days)
137
- forecast = self.prophet_model.predict(future)
138
- return forecast[['ds', 'yhat']].tail(days)
139
 
140
- # Gradio界面函數
141
  def update_stocks(category):
142
  if not category or category not in category_dict:
143
  return []
@@ -207,35 +197,46 @@ def predict_stock(category, stock, stock_item, period, selected_features, model_
207
  if not stock_code:
208
  return gr.update(value=None), "無法獲取股票代碼"
209
 
210
- # 下載股票數據,根據用戶選擇的時間範圍
211
  df = yf.download(stock_code, period=period)
212
  if df.empty:
213
  raise ValueError("無法獲取股票數據")
214
 
215
- # 預測
216
  predictor = StockPredictor()
 
217
  if model_type == "LSTM":
218
  predictor.train(df, selected_features)
219
  last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
220
  predictions = predictor.predict(last_data[0], 5)
221
-
222
- # 反轉預測結果
223
  last_original = df[selected_features].iloc[-1].values
224
  predictions_original = predictor.scaler.inverse_transform(
225
  np.vstack([last_data, predictions])
226
  )
227
  all_predictions = np.vstack([last_original, predictions_original[1:]])
 
228
  elif model_type == "Prophet":
229
- predictor.train_prophet(df, target_column=selected_features[0]) # 使用第一個特徵作為預測目標
230
- predictions = predictor.predict_prophet(df, days=5)
231
- all_predictions = predictions['yhat'].values
232
-
 
 
 
 
 
 
 
 
 
 
 
233
  # 創建日期索引
234
  dates = [datetime.now() + timedelta(days=i) for i in range(6)]
235
  date_labels = [d.strftime('%m/%d') for d in dates]
236
-
237
  # 繪圖
238
  fig, ax = plt.subplots(figsize=(14, 7))
 
239
  if model_type == "LSTM":
240
  colors = ['#FF9999', '#66B2FF']
241
  labels = [f'預測{feature}' for feature in selected_features]
@@ -247,20 +248,22 @@ def predict_stock(category, stock, stock_item, period, selected_features, model_
247
  textcoords="offset points", xytext=(0,10),
248
  ha='center', va='bottom')
249
  elif model_type == "Prophet":
250
- ax.plot(date_labels, all_predictions, label='預測',
251
  marker='o', color='#FF9999', linewidth=2)
252
  for j, value in enumerate(all_predictions):
253
- ax.annotate(f'{value:.2f}', (date_labels[j], value),
254
  textcoords="offset points", xytext=(0,10),
255
  ha='center', va='bottom')
256
-
257
  ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
258
  ax.set_xlabel('日期', labelpad=10)
259
  ax.set_ylabel('股價', labelpad=10)
260
  ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
261
  ax.grid(True, linestyle='--', alpha=0.7)
262
  plt.tight_layout()
 
263
  return gr.update(value=fig), "預測成功"
 
264
  except Exception as e:
265
  logging.error(f"預測過程發生錯誤: {str(e)}")
266
  return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
@@ -307,7 +310,7 @@ with gr.Blocks() as demo:
307
  )
308
  predict_button = gr.Button("開始預測", variant="primary")
309
  status_output = gr.Textbox(label="狀態", interactive=False)
310
- with gr.Row():
311
  stock_plot = gr.Plot(label="股價預測圖")
312
 
313
  # 事件綁定
@@ -323,10 +326,10 @@ with gr.Blocks() as demo:
323
  )
324
  predict_button.click(
325
  predict_stock,
326
- inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, period_dropdown, features_checkbox, model_type_radio],
 
327
  outputs=[stock_plot, status_output]
328
  )
329
 
330
  # 啟動應用
331
- if __name__ == "__main__":
332
- demo.launch(share=False)
 
20
 
21
  # 設置日誌
22
  logging.basicConfig(level=logging.INFO,
23
+ format='%(asctime)s - %(levelname)s - %(message)s')
24
 
25
  # 字體設置
26
  def setup_font():
 
124
  current_data = current_data.reshape(1, -1)
125
  return np.array(predictions)
126
 
127
+ def train_prophet(self, df_prophet):
 
128
  self.prophet_model = Prophet()
129
  self.prophet_model.fit(df_prophet)
 
 
 
 
 
 
 
 
130
 
 
131
  def update_stocks(category):
132
  if not category or category not in category_dict:
133
  return []
 
197
  if not stock_code:
198
  return gr.update(value=None), "無法獲取股票代碼"
199
 
200
+ # 下載股票數據
201
  df = yf.download(stock_code, period=period)
202
  if df.empty:
203
  raise ValueError("無法獲取股票數據")
204
 
 
205
  predictor = StockPredictor()
206
+
207
  if model_type == "LSTM":
208
  predictor.train(df, selected_features)
209
  last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
210
  predictions = predictor.predict(last_data[0], 5)
 
 
211
  last_original = df[selected_features].iloc[-1].values
212
  predictions_original = predictor.scaler.inverse_transform(
213
  np.vstack([last_data, predictions])
214
  )
215
  all_predictions = np.vstack([last_original, predictions_original[1:]])
216
+
217
  elif model_type == "Prophet":
218
+ target_feature = selected_features[0] # 使用第一個選擇的特徵
219
+ df_prophet = df.reset_index()
220
+ df_prophet = df_prophet[['Date', target_feature]].rename(
221
+ columns={'Date': 'ds', target_feature: 'y'})
222
+
223
+ predictor.train_prophet(df_prophet)
224
+ future_dates = pd.date_range(
225
+ start=df_prophet['ds'].iloc[-1] + pd.Timedelta(days=1),
226
+ periods=5,
227
+ freq='D'
228
+ )
229
+ future = pd.DataFrame({'ds': future_dates})
230
+ forecast = predictor.prophet_model.predict(future)
231
+ all_predictions = forecast['yhat'].values
232
+
233
  # 創建日期索引
234
  dates = [datetime.now() + timedelta(days=i) for i in range(6)]
235
  date_labels = [d.strftime('%m/%d') for d in dates]
236
+
237
  # 繪圖
238
  fig, ax = plt.subplots(figsize=(14, 7))
239
+
240
  if model_type == "LSTM":
241
  colors = ['#FF9999', '#66B2FF']
242
  labels = [f'預測{feature}' for feature in selected_features]
 
248
  textcoords="offset points", xytext=(0,10),
249
  ha='center', va='bottom')
250
  elif model_type == "Prophet":
251
+ ax.plot(date_labels[1:], all_predictions, label=f'預測{target_feature}',
252
  marker='o', color='#FF9999', linewidth=2)
253
  for j, value in enumerate(all_predictions):
254
+ ax.annotate(f'{value:.2f}', (date_labels[j+1], value),
255
  textcoords="offset points", xytext=(0,10),
256
  ha='center', va='bottom')
257
+
258
  ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
259
  ax.set_xlabel('日期', labelpad=10)
260
  ax.set_ylabel('股價', labelpad=10)
261
  ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
262
  ax.grid(True, linestyle='--', alpha=0.7)
263
  plt.tight_layout()
264
+
265
  return gr.update(value=fig), "預測成功"
266
+
267
  except Exception as e:
268
  logging.error(f"預測過程發生錯誤: {str(e)}")
269
  return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
 
310
  )
311
  predict_button = gr.Button("開始預測", variant="primary")
312
  status_output = gr.Textbox(label="狀態", interactive=False)
313
+ with gr.Column():
314
  stock_plot = gr.Plot(label="股價預測圖")
315
 
316
  # 事件綁定
 
326
  )
327
  predict_button.click(
328
  predict_stock,
329
+ inputs=[category_dropdown, stock_dropdown, stock_item_dropdown,
330
+ period_dropdown, features_checkbox, model_type_radio],
331
  outputs=[stock_plot, status_output]
332
  )
333
 
334
  # 啟動應用
335
+ if __name__ == "__main__