Spaces:
Running
Running
Commit
·
2da62f5
1
Parent(s):
e79c8a9
cla1
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ from prophet import Prophet
|
|
20 |
|
21 |
# 設置日誌
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
-
|
24 |
|
25 |
# 字體設置
|
26 |
def setup_font():
|
@@ -124,20 +124,10 @@ class StockPredictor:
|
|
124 |
current_data = current_data.reshape(1, -1)
|
125 |
return np.array(predictions)
|
126 |
|
127 |
-
def train_prophet(self,
|
128 |
-
df_prophet = df.reset_index()[['Date', target_column]].rename(columns={'Date': 'ds', target_column: 'y'})
|
129 |
self.prophet_model = Prophet()
|
130 |
self.prophet_model.fit(df_prophet)
|
131 |
-
|
132 |
-
def predict_prophet(self, df, days=5):
|
133 |
-
if self.prophet_model is None:
|
134 |
-
raise ValueError("Prophet model has not been trained yet.")
|
135 |
-
|
136 |
-
future = self.prophet_model.make_future_dataframe(periods=days)
|
137 |
-
forecast = self.prophet_model.predict(future)
|
138 |
-
return forecast[['ds', 'yhat']].tail(days)
|
139 |
|
140 |
-
# Gradio界面函數
|
141 |
def update_stocks(category):
|
142 |
if not category or category not in category_dict:
|
143 |
return []
|
@@ -207,35 +197,46 @@ def predict_stock(category, stock, stock_item, period, selected_features, model_
|
|
207 |
if not stock_code:
|
208 |
return gr.update(value=None), "無法獲取股票代碼"
|
209 |
|
210 |
-
#
|
211 |
df = yf.download(stock_code, period=period)
|
212 |
if df.empty:
|
213 |
raise ValueError("無法獲取股票數據")
|
214 |
|
215 |
-
# 預測
|
216 |
predictor = StockPredictor()
|
|
|
217 |
if model_type == "LSTM":
|
218 |
predictor.train(df, selected_features)
|
219 |
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
220 |
predictions = predictor.predict(last_data[0], 5)
|
221 |
-
|
222 |
-
# 反轉預測結果
|
223 |
last_original = df[selected_features].iloc[-1].values
|
224 |
predictions_original = predictor.scaler.inverse_transform(
|
225 |
np.vstack([last_data, predictions])
|
226 |
)
|
227 |
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
|
|
228 |
elif model_type == "Prophet":
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
# 創建日期索引
|
234 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
235 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
236 |
-
|
237 |
# 繪圖
|
238 |
fig, ax = plt.subplots(figsize=(14, 7))
|
|
|
239 |
if model_type == "LSTM":
|
240 |
colors = ['#FF9999', '#66B2FF']
|
241 |
labels = [f'預測{feature}' for feature in selected_features]
|
@@ -247,20 +248,22 @@ def predict_stock(category, stock, stock_item, period, selected_features, model_
|
|
247 |
textcoords="offset points", xytext=(0,10),
|
248 |
ha='center', va='bottom')
|
249 |
elif model_type == "Prophet":
|
250 |
-
ax.plot(date_labels, all_predictions, label='預測',
|
251 |
marker='o', color='#FF9999', linewidth=2)
|
252 |
for j, value in enumerate(all_predictions):
|
253 |
-
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
254 |
textcoords="offset points", xytext=(0,10),
|
255 |
ha='center', va='bottom')
|
256 |
-
|
257 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
258 |
ax.set_xlabel('日期', labelpad=10)
|
259 |
ax.set_ylabel('股價', labelpad=10)
|
260 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
261 |
ax.grid(True, linestyle='--', alpha=0.7)
|
262 |
plt.tight_layout()
|
|
|
263 |
return gr.update(value=fig), "預測成功"
|
|
|
264 |
except Exception as e:
|
265 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
266 |
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
@@ -307,7 +310,7 @@ with gr.Blocks() as demo:
|
|
307 |
)
|
308 |
predict_button = gr.Button("開始預測", variant="primary")
|
309 |
status_output = gr.Textbox(label="狀態", interactive=False)
|
310 |
-
with gr.
|
311 |
stock_plot = gr.Plot(label="股價預測圖")
|
312 |
|
313 |
# 事件綁定
|
@@ -323,10 +326,10 @@ with gr.Blocks() as demo:
|
|
323 |
)
|
324 |
predict_button.click(
|
325 |
predict_stock,
|
326 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown,
|
|
|
327 |
outputs=[stock_plot, status_output]
|
328 |
)
|
329 |
|
330 |
# 啟動應用
|
331 |
-
if __name__ == "__main__
|
332 |
-
demo.launch(share=False)
|
|
|
20 |
|
21 |
# 設置日誌
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
|
25 |
# 字體設置
|
26 |
def setup_font():
|
|
|
124 |
current_data = current_data.reshape(1, -1)
|
125 |
return np.array(predictions)
|
126 |
|
127 |
+
def train_prophet(self, df_prophet):
|
|
|
128 |
self.prophet_model = Prophet()
|
129 |
self.prophet_model.fit(df_prophet)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
131 |
def update_stocks(category):
|
132 |
if not category or category not in category_dict:
|
133 |
return []
|
|
|
197 |
if not stock_code:
|
198 |
return gr.update(value=None), "無法獲取股票代碼"
|
199 |
|
200 |
+
# 下載股票數據
|
201 |
df = yf.download(stock_code, period=period)
|
202 |
if df.empty:
|
203 |
raise ValueError("無法獲取股票數據")
|
204 |
|
|
|
205 |
predictor = StockPredictor()
|
206 |
+
|
207 |
if model_type == "LSTM":
|
208 |
predictor.train(df, selected_features)
|
209 |
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
210 |
predictions = predictor.predict(last_data[0], 5)
|
|
|
|
|
211 |
last_original = df[selected_features].iloc[-1].values
|
212 |
predictions_original = predictor.scaler.inverse_transform(
|
213 |
np.vstack([last_data, predictions])
|
214 |
)
|
215 |
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
216 |
+
|
217 |
elif model_type == "Prophet":
|
218 |
+
target_feature = selected_features[0] # 使用第一個選擇的特徵
|
219 |
+
df_prophet = df.reset_index()
|
220 |
+
df_prophet = df_prophet[['Date', target_feature]].rename(
|
221 |
+
columns={'Date': 'ds', target_feature: 'y'})
|
222 |
+
|
223 |
+
predictor.train_prophet(df_prophet)
|
224 |
+
future_dates = pd.date_range(
|
225 |
+
start=df_prophet['ds'].iloc[-1] + pd.Timedelta(days=1),
|
226 |
+
periods=5,
|
227 |
+
freq='D'
|
228 |
+
)
|
229 |
+
future = pd.DataFrame({'ds': future_dates})
|
230 |
+
forecast = predictor.prophet_model.predict(future)
|
231 |
+
all_predictions = forecast['yhat'].values
|
232 |
+
|
233 |
# 創建日期索引
|
234 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
235 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
236 |
+
|
237 |
# 繪圖
|
238 |
fig, ax = plt.subplots(figsize=(14, 7))
|
239 |
+
|
240 |
if model_type == "LSTM":
|
241 |
colors = ['#FF9999', '#66B2FF']
|
242 |
labels = [f'預測{feature}' for feature in selected_features]
|
|
|
248 |
textcoords="offset points", xytext=(0,10),
|
249 |
ha='center', va='bottom')
|
250 |
elif model_type == "Prophet":
|
251 |
+
ax.plot(date_labels[1:], all_predictions, label=f'預測{target_feature}',
|
252 |
marker='o', color='#FF9999', linewidth=2)
|
253 |
for j, value in enumerate(all_predictions):
|
254 |
+
ax.annotate(f'{value:.2f}', (date_labels[j+1], value),
|
255 |
textcoords="offset points", xytext=(0,10),
|
256 |
ha='center', va='bottom')
|
257 |
+
|
258 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
259 |
ax.set_xlabel('日期', labelpad=10)
|
260 |
ax.set_ylabel('股價', labelpad=10)
|
261 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
262 |
ax.grid(True, linestyle='--', alpha=0.7)
|
263 |
plt.tight_layout()
|
264 |
+
|
265 |
return gr.update(value=fig), "預測成功"
|
266 |
+
|
267 |
except Exception as e:
|
268 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
269 |
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
|
|
310 |
)
|
311 |
predict_button = gr.Button("開始預測", variant="primary")
|
312 |
status_output = gr.Textbox(label="狀態", interactive=False)
|
313 |
+
with gr.Column():
|
314 |
stock_plot = gr.Plot(label="股價預測圖")
|
315 |
|
316 |
# 事件綁定
|
|
|
326 |
)
|
327 |
predict_button.click(
|
328 |
predict_stock,
|
329 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown,
|
330 |
+
period_dropdown, features_checkbox, model_type_radio],
|
331 |
outputs=[stock_plot, status_output]
|
332 |
)
|
333 |
|
334 |
# 啟動應用
|
335 |
+
if __name__ == "__main__
|
|