Spaces:
Sleeping
Sleeping
Commit
·
359bd0c
1
Parent(s):
f7c1877
gr
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from sklearn.preprocessing import MinMaxScaler
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
-
from prophet import Prophet
|
11 |
import matplotlib.pyplot as plt
|
12 |
import io
|
13 |
import matplotlib as mpl
|
@@ -17,21 +16,20 @@ import os
|
|
17 |
import yfinance as yf
|
18 |
import logging
|
19 |
from datetime import datetime, timedelta
|
|
|
20 |
|
21 |
-
#
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
-
|
24 |
|
25 |
# 字體設置
|
26 |
def setup_font():
|
27 |
try:
|
28 |
url_font = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_"
|
29 |
response_font = requests.get(url_font)
|
30 |
-
|
31 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.ttf') as tmp_file:
|
32 |
tmp_file.write(response_font.content)
|
33 |
tmp_file_path = tmp_file.name
|
34 |
-
|
35 |
fm.fontManager.addfont(tmp_file_path)
|
36 |
mpl.rc('font', family='Taipei Sans TC Beta')
|
37 |
except Exception as e:
|
@@ -53,50 +51,44 @@ def fetch_stock_categories():
|
|
53 |
url = "https://tw.stock.yahoo.com/class/"
|
54 |
response = requests.get(url, headers=headers, timeout=10)
|
55 |
response.raise_for_status()
|
56 |
-
|
57 |
soup = BeautifulSoup(response.text, 'html.parser')
|
58 |
main_categories = soup.find_all('div', class_='C($c-link-text)')
|
59 |
-
|
60 |
data = []
|
61 |
for category in main_categories:
|
62 |
main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
|
63 |
if main_category_name:
|
64 |
main_category_name = main_category_name.text.strip()
|
65 |
sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
|
66 |
-
|
67 |
for sub_category in sub_categories:
|
68 |
data.append({
|
69 |
'台股': main_category_name,
|
70 |
'類股': sub_category.text.strip(),
|
71 |
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
72 |
})
|
73 |
-
|
74 |
category_dict = {}
|
75 |
for item in data:
|
76 |
if item['台股'] not in category_dict:
|
77 |
category_dict[item['台股']] = []
|
78 |
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
79 |
-
|
80 |
return category_dict
|
81 |
except Exception as e:
|
82 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
83 |
return {}
|
84 |
|
85 |
-
#
|
86 |
class StockPredictor:
|
87 |
def __init__(self):
|
88 |
-
self.
|
|
|
89 |
self.scaler = MinMaxScaler()
|
90 |
-
|
91 |
-
def prepare_data(self, df,
|
92 |
-
scaled_data = self.scaler.fit_transform(df[
|
93 |
-
|
94 |
X, y = [], []
|
95 |
for i in range(len(scaled_data) - 1):
|
96 |
X.append(scaled_data[i])
|
97 |
-
y.append(scaled_data[i+1
|
98 |
-
|
99 |
-
return np.array(X).reshape(-1, 1, len(features)), np.array(y)
|
100 |
|
101 |
def build_model(self, input_shape):
|
102 |
model = Sequential([
|
@@ -104,15 +96,15 @@ class StockPredictor:
|
|
104 |
Dropout(0.2),
|
105 |
LSTM(50, activation='relu'),
|
106 |
Dropout(0.2),
|
107 |
-
Dense(
|
108 |
])
|
109 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
110 |
return model
|
111 |
|
112 |
-
def train(self, df,
|
113 |
-
X, y = self.prepare_data(df,
|
114 |
-
self.
|
115 |
-
history = self.
|
116 |
X, y,
|
117 |
epochs=50,
|
118 |
batch_size=32,
|
@@ -124,17 +116,26 @@ class StockPredictor:
|
|
124 |
def predict(self, last_data, n_days):
|
125 |
predictions = []
|
126 |
current_data = last_data.copy()
|
127 |
-
|
128 |
for _ in range(n_days):
|
129 |
-
next_day = self.
|
130 |
predictions.append(next_day[0])
|
131 |
-
|
132 |
current_data = current_data.flatten()
|
133 |
-
current_data[0] = next_day[0]
|
134 |
-
current_data[3] = next_day[0][1]
|
135 |
current_data = current_data.reshape(1, -1)
|
136 |
-
|
137 |
return np.array(predictions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
# Gradio界面函數
|
140 |
def update_stocks(category):
|
@@ -146,10 +147,8 @@ def get_stock_items(url):
|
|
146 |
try:
|
147 |
response = requests.get(url, headers=headers, timeout=10)
|
148 |
response.raise_for_status()
|
149 |
-
|
150 |
soup = BeautifulSoup(response.text, 'html.parser')
|
151 |
stock_items = soup.find_all('li', class_='List(n)')
|
152 |
-
|
153 |
stocks_dict = {}
|
154 |
for item in stock_items:
|
155 |
stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
|
@@ -159,7 +158,6 @@ def get_stock_items(url):
|
|
159 |
display_code = full_code.split('.')[0]
|
160 |
display_name = f"{stock_name.text.strip()}{display_code}"
|
161 |
stocks_dict[display_name] = full_code
|
162 |
-
|
163 |
return stocks_dict
|
164 |
except Exception as e:
|
165 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
@@ -170,108 +168,99 @@ def update_category(category):
|
|
170 |
return {
|
171 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
172 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
173 |
-
stock_plot: gr.update(value=None)
|
|
|
174 |
}
|
175 |
|
176 |
def update_stock(category, stock):
|
177 |
if not category or not stock:
|
178 |
return {
|
179 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
180 |
-
stock_plot: gr.update(value=None)
|
|
|
181 |
}
|
182 |
-
|
183 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
184 |
if item['類股'] == stock), None)
|
185 |
-
|
186 |
if url:
|
187 |
stock_items = get_stock_items(url)
|
188 |
return {
|
189 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
190 |
-
stock_plot: gr.update(value=None)
|
|
|
191 |
}
|
192 |
return {
|
193 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
194 |
-
stock_plot: gr.update(value=None)
|
|
|
195 |
}
|
196 |
|
197 |
-
def predict_stock(category, stock, stock_item, period,
|
198 |
if not all([category, stock, stock_item]):
|
199 |
-
return gr.update(value=None), "
|
200 |
-
|
201 |
try:
|
202 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
203 |
-
|
204 |
if not url:
|
205 |
-
return gr.update(value=None), "
|
206 |
-
|
207 |
stock_items = get_stock_items(url)
|
208 |
stock_code = stock_items.get(stock_item, "")
|
209 |
-
|
210 |
if not stock_code:
|
211 |
-
return gr.update(value=None), "
|
212 |
|
213 |
-
#
|
214 |
df = yf.download(stock_code, period=period)
|
215 |
if df.empty:
|
216 |
raise ValueError("無法獲取股票數據")
|
217 |
|
218 |
# 預測
|
|
|
219 |
if model_type == "LSTM":
|
220 |
-
predictor
|
221 |
-
predictor.
|
222 |
-
last_data = predictor.scaler.transform(df.iloc[-1:][features])
|
223 |
predictions = predictor.predict(last_data[0], 5)
|
224 |
|
225 |
# 反轉預測結果
|
226 |
-
last_original = df[
|
227 |
predictions_original = predictor.scaler.inverse_transform(
|
228 |
-
np.
|
229 |
-
)
|
230 |
-
all_predictions = np.vstack([last_original, predictions_original])
|
231 |
-
|
232 |
elif model_type == "Prophet":
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
forecast = m.predict(future)
|
238 |
-
all_predictions = forecast[['ds', 'yhat']].tail(6)
|
239 |
-
date_labels = all_predictions['ds'].dt.strftime('%m/%d').tolist()
|
240 |
-
all_predictions = all_predictions['yhat'].values
|
241 |
-
|
242 |
# 創建日期索引
|
243 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
244 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
245 |
-
|
246 |
# 繪圖
|
247 |
fig, ax = plt.subplots(figsize=(14, 7))
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
for j, value in enumerate(all_predictions):
|
255 |
-
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
256 |
-
textcoords="offset points", xytext=(0,10),
|
257 |
-
ha='center', va='bottom')
|
258 |
-
break
|
259 |
-
else:
|
260 |
-
ax.plot(date_labels, all_predictions[:, i], label=label, marker='o', color=color, linewidth=2)
|
261 |
for j, value in enumerate(all_predictions[:, i]):
|
262 |
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
267 |
ax.set_xlabel('日期', labelpad=10)
|
268 |
ax.set_ylabel('股價', labelpad=10)
|
269 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
270 |
ax.grid(True, linestyle='--', alpha=0.7)
|
271 |
-
|
272 |
plt.tight_layout()
|
273 |
return gr.update(value=fig), "預測成功"
|
274 |
-
|
275 |
except Exception as e:
|
276 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
277 |
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
@@ -302,45 +291,42 @@ with gr.Blocks() as demo:
|
|
302 |
value=None
|
303 |
)
|
304 |
period_dropdown = gr.Dropdown(
|
305 |
-
choices=["
|
306 |
label="抓取時間範圍",
|
307 |
value="1y"
|
308 |
)
|
309 |
-
|
310 |
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
311 |
label="選擇要用於預測的特徵",
|
312 |
value=['Open', 'Close']
|
313 |
)
|
314 |
-
|
315 |
choices=["LSTM", "Prophet"],
|
316 |
-
label="
|
317 |
value="LSTM"
|
318 |
)
|
319 |
predict_button = gr.Button("開始預測", variant="primary")
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
# 事件綁定
|
326 |
category_dropdown.change(
|
327 |
update_category,
|
328 |
inputs=[category_dropdown],
|
329 |
-
outputs=[stock_dropdown, stock_item_dropdown, stock_plot]
|
330 |
)
|
331 |
-
|
332 |
stock_dropdown.change(
|
333 |
update_stock,
|
334 |
inputs=[category_dropdown, stock_dropdown],
|
335 |
-
outputs=[stock_item_dropdown, stock_plot]
|
336 |
)
|
337 |
-
|
338 |
predict_button.click(
|
339 |
predict_stock,
|
340 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, period_dropdown,
|
341 |
-
outputs=[stock_plot,
|
342 |
)
|
343 |
|
344 |
# 啟動應用
|
345 |
if __name__ == "__main__":
|
346 |
-
demo.launch(share=False)
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import io
|
12 |
import matplotlib as mpl
|
|
|
16 |
import yfinance as yf
|
17 |
import logging
|
18 |
from datetime import datetime, timedelta
|
19 |
+
from fbprophet import Prophet
|
20 |
|
21 |
+
# 設置日誌
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
|
25 |
# 字體設置
|
26 |
def setup_font():
|
27 |
try:
|
28 |
url_font = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_"
|
29 |
response_font = requests.get(url_font)
|
|
|
30 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.ttf') as tmp_file:
|
31 |
tmp_file.write(response_font.content)
|
32 |
tmp_file_path = tmp_file.name
|
|
|
33 |
fm.fontManager.addfont(tmp_file_path)
|
34 |
mpl.rc('font', family='Taipei Sans TC Beta')
|
35 |
except Exception as e:
|
|
|
51 |
url = "https://tw.stock.yahoo.com/class/"
|
52 |
response = requests.get(url, headers=headers, timeout=10)
|
53 |
response.raise_for_status()
|
|
|
54 |
soup = BeautifulSoup(response.text, 'html.parser')
|
55 |
main_categories = soup.find_all('div', class_='C($c-link-text)')
|
|
|
56 |
data = []
|
57 |
for category in main_categories:
|
58 |
main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
|
59 |
if main_category_name:
|
60 |
main_category_name = main_category_name.text.strip()
|
61 |
sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
|
|
|
62 |
for sub_category in sub_categories:
|
63 |
data.append({
|
64 |
'台股': main_category_name,
|
65 |
'類股': sub_category.text.strip(),
|
66 |
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
67 |
})
|
|
|
68 |
category_dict = {}
|
69 |
for item in data:
|
70 |
if item['台股'] not in category_dict:
|
71 |
category_dict[item['台股']] = []
|
72 |
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
|
|
73 |
return category_dict
|
74 |
except Exception as e:
|
75 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
76 |
return {}
|
77 |
|
78 |
+
# 股票預測模型類別
|
79 |
class StockPredictor:
|
80 |
def __init__(self):
|
81 |
+
self.lstm_model = None
|
82 |
+
self.prophet_model = None
|
83 |
self.scaler = MinMaxScaler()
|
84 |
+
|
85 |
+
def prepare_data(self, df, selected_features):
|
86 |
+
scaled_data = self.scaler.fit_transform(df[selected_features])
|
|
|
87 |
X, y = [], []
|
88 |
for i in range(len(scaled_data) - 1):
|
89 |
X.append(scaled_data[i])
|
90 |
+
y.append(scaled_data[i+1])
|
91 |
+
return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
|
|
|
92 |
|
93 |
def build_model(self, input_shape):
|
94 |
model = Sequential([
|
|
|
96 |
Dropout(0.2),
|
97 |
LSTM(50, activation='relu'),
|
98 |
Dropout(0.2),
|
99 |
+
Dense(input_shape[1])
|
100 |
])
|
101 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
102 |
return model
|
103 |
|
104 |
+
def train(self, df, selected_features):
|
105 |
+
X, y = self.prepare_data(df, selected_features)
|
106 |
+
self.lstm_model = self.build_model((1, X.shape[2]))
|
107 |
+
history = self.lstm_model.fit(
|
108 |
X, y,
|
109 |
epochs=50,
|
110 |
batch_size=32,
|
|
|
116 |
def predict(self, last_data, n_days):
|
117 |
predictions = []
|
118 |
current_data = last_data.copy()
|
|
|
119 |
for _ in range(n_days):
|
120 |
+
next_day = self.lstm_model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
121 |
predictions.append(next_day[0])
|
|
|
122 |
current_data = current_data.flatten()
|
123 |
+
current_data[:len(next_day[0])] = next_day[0]
|
|
|
124 |
current_data = current_data.reshape(1, -1)
|
|
|
125 |
return np.array(predictions)
|
126 |
+
|
127 |
+
def train_prophet(self, df, target_column='Close'):
|
128 |
+
df_prophet = df.reset_index()[['Date', target_column]].rename(columns={'Date': 'ds', target_column: 'y'})
|
129 |
+
self.prophet_model = Prophet()
|
130 |
+
self.prophet_model.fit(df_prophet)
|
131 |
+
|
132 |
+
def predict_prophet(self, df, days=5):
|
133 |
+
if self.prophet_model is None:
|
134 |
+
raise ValueError("Prophet model has not been trained yet.")
|
135 |
+
|
136 |
+
future = self.prophet_model.make_future_dataframe(periods=days)
|
137 |
+
forecast = self.prophet_model.predict(future)
|
138 |
+
return forecast[['ds', 'yhat']].tail(days)
|
139 |
|
140 |
# Gradio界面函數
|
141 |
def update_stocks(category):
|
|
|
147 |
try:
|
148 |
response = requests.get(url, headers=headers, timeout=10)
|
149 |
response.raise_for_status()
|
|
|
150 |
soup = BeautifulSoup(response.text, 'html.parser')
|
151 |
stock_items = soup.find_all('li', class_='List(n)')
|
|
|
152 |
stocks_dict = {}
|
153 |
for item in stock_items:
|
154 |
stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
|
|
|
158 |
display_code = full_code.split('.')[0]
|
159 |
display_name = f"{stock_name.text.strip()}{display_code}"
|
160 |
stocks_dict[display_name] = full_code
|
|
|
161 |
return stocks_dict
|
162 |
except Exception as e:
|
163 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
|
|
168 |
return {
|
169 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
170 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
171 |
+
stock_plot: gr.update(value=None),
|
172 |
+
status_output: gr.update(value="")
|
173 |
}
|
174 |
|
175 |
def update_stock(category, stock):
|
176 |
if not category or not stock:
|
177 |
return {
|
178 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
179 |
+
stock_plot: gr.update(value=None),
|
180 |
+
status_output: gr.update(value="")
|
181 |
}
|
|
|
182 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
183 |
if item['類股'] == stock), None)
|
|
|
184 |
if url:
|
185 |
stock_items = get_stock_items(url)
|
186 |
return {
|
187 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
188 |
+
stock_plot: gr.update(value=None),
|
189 |
+
status_output: gr.update(value="")
|
190 |
}
|
191 |
return {
|
192 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
193 |
+
stock_plot: gr.update(value=None),
|
194 |
+
status_output: gr.update(value="")
|
195 |
}
|
196 |
|
197 |
+
def predict_stock(category, stock, stock_item, period, selected_features, model_type):
|
198 |
if not all([category, stock, stock_item]):
|
199 |
+
return gr.update(value=None), "請選擇產業類別、類股和股票"
|
|
|
200 |
try:
|
201 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
202 |
+
if item['類股'] == stock), None)
|
203 |
if not url:
|
204 |
+
return gr.update(value=None), "無法獲取類股網址"
|
|
|
205 |
stock_items = get_stock_items(url)
|
206 |
stock_code = stock_items.get(stock_item, "")
|
|
|
207 |
if not stock_code:
|
208 |
+
return gr.update(value=None), "無法獲取股票代碼"
|
209 |
|
210 |
+
# 下載股票數據,根據用戶選擇的時間範圍
|
211 |
df = yf.download(stock_code, period=period)
|
212 |
if df.empty:
|
213 |
raise ValueError("無法獲取股票數據")
|
214 |
|
215 |
# 預測
|
216 |
+
predictor = StockPredictor()
|
217 |
if model_type == "LSTM":
|
218 |
+
predictor.train(df, selected_features)
|
219 |
+
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
|
|
220 |
predictions = predictor.predict(last_data[0], 5)
|
221 |
|
222 |
# 反轉預測結果
|
223 |
+
last_original = df[selected_features].iloc[-1].values
|
224 |
predictions_original = predictor.scaler.inverse_transform(
|
225 |
+
np.vstack([last_data, predictions])
|
226 |
+
)
|
227 |
+
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
|
|
228 |
elif model_type == "Prophet":
|
229 |
+
predictor.train_prophet(df, target_column=selected_features[0]) # 使用第一個特徵作為預測目標
|
230 |
+
predictions = predictor.predict_prophet(df, days=5)
|
231 |
+
all_predictions = predictions['yhat'].values
|
232 |
+
|
|
|
|
|
|
|
|
|
|
|
233 |
# 創建日期索引
|
234 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
235 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
236 |
+
|
237 |
# 繪圖
|
238 |
fig, ax = plt.subplots(figsize=(14, 7))
|
239 |
+
if model_type == "LSTM":
|
240 |
+
colors = ['#FF9999', '#66B2FF']
|
241 |
+
labels = [f'預測{feature}' for feature in selected_features]
|
242 |
+
for i, (label, color) in enumerate(zip(labels, colors)):
|
243 |
+
ax.plot(date_labels, all_predictions[:, i], label=label,
|
244 |
+
marker='o', color=color, linewidth=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
for j, value in enumerate(all_predictions[:, i]):
|
246 |
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
247 |
+
textcoords="offset points", xytext=(0,10),
|
248 |
+
ha='center', va='bottom')
|
249 |
+
elif model_type == "Prophet":
|
250 |
+
ax.plot(date_labels, all_predictions, label='預測',
|
251 |
+
marker='o', color='#FF9999', linewidth=2)
|
252 |
+
for j, value in enumerate(all_predictions):
|
253 |
+
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
254 |
+
textcoords="offset points", xytext=(0,10),
|
255 |
+
ha='center', va='bottom')
|
256 |
+
|
257 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
258 |
ax.set_xlabel('日期', labelpad=10)
|
259 |
ax.set_ylabel('股價', labelpad=10)
|
260 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
261 |
ax.grid(True, linestyle='--', alpha=0.7)
|
|
|
262 |
plt.tight_layout()
|
263 |
return gr.update(value=fig), "預測成功"
|
|
|
264 |
except Exception as e:
|
265 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
266 |
return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"
|
|
|
291 |
value=None
|
292 |
)
|
293 |
period_dropdown = gr.Dropdown(
|
294 |
+
choices=["1y", "6mo", "3mo", "1mo"],
|
295 |
label="抓取時間範圍",
|
296 |
value="1y"
|
297 |
)
|
298 |
+
features_checkbox = gr.CheckboxGroup(
|
299 |
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
300 |
label="選擇要用於預測的特徵",
|
301 |
value=['Open', 'Close']
|
302 |
)
|
303 |
+
model_type_radio = gr.Radio(
|
304 |
choices=["LSTM", "Prophet"],
|
305 |
+
label="選擇模型類型",
|
306 |
value="LSTM"
|
307 |
)
|
308 |
predict_button = gr.Button("開始預測", variant="primary")
|
309 |
+
status_output = gr.Textbox(label="狀態", interactive=False)
|
310 |
+
with gr.Row():
|
311 |
+
stock_plot = gr.Plot(label="股價預測圖")
|
312 |
+
|
|
|
313 |
# 事件綁定
|
314 |
category_dropdown.change(
|
315 |
update_category,
|
316 |
inputs=[category_dropdown],
|
317 |
+
outputs=[stock_dropdown, stock_item_dropdown, stock_plot, status_output]
|
318 |
)
|
|
|
319 |
stock_dropdown.change(
|
320 |
update_stock,
|
321 |
inputs=[category_dropdown, stock_dropdown],
|
322 |
+
outputs=[stock_item_dropdown, stock_plot, status_output]
|
323 |
)
|
|
|
324 |
predict_button.click(
|
325 |
predict_stock,
|
326 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, period_dropdown, features_checkbox, model_type_radio],
|
327 |
+
outputs=[stock_plot, status_output]
|
328 |
)
|
329 |
|
330 |
# 啟動應用
|
331 |
if __name__ == "__main__":
|
332 |
+
demo.launch(share=False)
|