Spaces:
Running
Running
Commit
·
40f675a
1
Parent(s):
d83f194
bug
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import aiohttp
|
3 |
-
import asyncio
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
6 |
import pandas as pd
|
@@ -9,15 +7,15 @@ from sklearn.preprocessing import MinMaxScaler
|
|
9 |
from tensorflow.keras.models import Sequential
|
10 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
11 |
from tensorflow.keras.optimizers import Adam
|
12 |
-
|
13 |
-
import
|
14 |
-
import plotly.io as pio
|
15 |
-
import yfinance as yf
|
16 |
-
import logging
|
17 |
-
import tempfile
|
18 |
-
import os
|
19 |
import matplotlib as mpl
|
20 |
import matplotlib.font_manager as fm
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# 設置日志
|
23 |
logging.basicConfig(level=logging.INFO,
|
@@ -49,55 +47,56 @@ headers = {
|
|
49 |
'Upgrade-Insecure-Requests': '1'
|
50 |
}
|
51 |
|
52 |
-
|
53 |
try:
|
54 |
url = "https://tw.stock.yahoo.com/class/"
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
for sub_category in sub_categories:
|
69 |
-
data.append({
|
70 |
-
'台股': main_category_name,
|
71 |
-
'類股': sub_category.text.strip(),
|
72 |
-
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
73 |
-
})
|
74 |
-
|
75 |
-
category_dict = {}
|
76 |
-
for item in data:
|
77 |
-
if item['台股'] not in category_dict:
|
78 |
-
category_dict[item['台股']] = []
|
79 |
-
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
84 |
return {}
|
85 |
|
86 |
-
#
|
87 |
class StockPredictor:
|
88 |
def __init__(self):
|
89 |
self.model = None
|
90 |
self.scaler = MinMaxScaler()
|
91 |
|
92 |
-
def prepare_data(self, df
|
93 |
-
|
|
|
94 |
|
95 |
X, y = [], []
|
96 |
for i in range(len(scaled_data) - 1):
|
97 |
X.append(scaled_data[i])
|
98 |
-
y.append(scaled_data[i+1])
|
99 |
|
100 |
-
return np.array(X).reshape(-1, 1, len(
|
101 |
|
102 |
def build_model(self, input_shape):
|
103 |
model = Sequential([
|
@@ -105,13 +104,13 @@ class StockPredictor:
|
|
105 |
Dropout(0.2),
|
106 |
LSTM(50, activation='relu'),
|
107 |
Dropout(0.2),
|
108 |
-
Dense(
|
109 |
])
|
110 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
111 |
return model
|
112 |
|
113 |
-
def train(self, df
|
114 |
-
X, y = self.prepare_data(df
|
115 |
self.model = self.build_model((1, X.shape[2]))
|
116 |
history = self.model.fit(
|
117 |
X, y,
|
@@ -130,97 +129,139 @@ class StockPredictor:
|
|
130 |
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
131 |
predictions.append(next_day[0])
|
132 |
|
133 |
-
current_data =
|
|
|
|
|
|
|
134 |
|
135 |
return np.array(predictions)
|
136 |
|
137 |
# Gradio界面函數
|
138 |
-
|
139 |
if not category or category not in category_dict:
|
140 |
return []
|
141 |
return [item['類股'] for item in category_dict[category]]
|
142 |
|
143 |
-
|
144 |
try:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
except Exception as e:
|
163 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
164 |
return {}
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
if not all([category, stock, stock_item]):
|
168 |
-
return gr.update(value=None)
|
169 |
|
170 |
try:
|
171 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
172 |
if item['類股'] == stock), None)
|
173 |
if not url:
|
174 |
-
return gr.update(value=None)
|
175 |
|
176 |
-
stock_items =
|
177 |
stock_code = stock_items.get(stock_item, "")
|
178 |
|
179 |
if not stock_code:
|
180 |
-
return gr.update(value=None)
|
181 |
|
182 |
-
#
|
183 |
-
df = yf.download(stock_code, period=
|
184 |
if df.empty:
|
185 |
raise ValueError("無法獲取股票數據")
|
186 |
|
187 |
# 預測
|
188 |
predictor = StockPredictor()
|
189 |
-
predictor.train(df
|
190 |
|
191 |
-
last_data = predictor.scaler.transform(df.iloc[-1:][
|
192 |
predictions = predictor.predict(last_data[0], 5)
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
# 創建日期指標
|
195 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
196 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
197 |
|
198 |
-
#
|
199 |
-
fig =
|
200 |
-
|
201 |
-
|
202 |
-
x=date_labels,
|
203 |
-
y=np.hstack([df[feature].iloc[-1], predictions[:, i]]),
|
204 |
-
mode='lines+markers',
|
205 |
-
name=f'預測{feature}'
|
206 |
-
))
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
|
|
216 |
|
217 |
except Exception as e:
|
218 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
219 |
-
return gr.update(value=None)
|
220 |
|
221 |
# 初始化
|
222 |
setup_font()
|
223 |
-
category_dict =
|
224 |
categories = list(category_dict.keys())
|
225 |
|
226 |
# Gradio界面
|
@@ -243,41 +284,31 @@ with gr.Blocks() as demo:
|
|
243 |
label="股票",
|
244 |
value=None
|
245 |
)
|
246 |
-
period_dropdown = gr.Dropdown(
|
247 |
-
choices=["1y", "6mo", "3mo", "1mo"],
|
248 |
-
label="抓取時間範圍",
|
249 |
-
value="1y"
|
250 |
-
)
|
251 |
-
features_checkbox = gr.CheckboxGroup(
|
252 |
-
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
253 |
-
label="選擇要用於預測的特徵",
|
254 |
-
value=['Open', 'Close']
|
255 |
-
)
|
256 |
predict_button = gr.Button("開始預測", variant="primary")
|
257 |
-
status_output = gr.Textbox(label="狀態", interactive=False)
|
258 |
|
259 |
with gr.Row():
|
260 |
-
stock_plot = gr.
|
261 |
|
262 |
# 事件綁定
|
263 |
category_dropdown.change(
|
264 |
-
|
265 |
inputs=[category_dropdown],
|
266 |
-
outputs=[stock_dropdown]
|
267 |
)
|
268 |
|
269 |
stock_dropdown.change(
|
270 |
-
|
271 |
-
inputs=[category_dropdown],
|
272 |
-
outputs=[stock_item_dropdown]
|
273 |
)
|
274 |
|
275 |
predict_button.click(
|
276 |
predict_stock,
|
277 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown
|
278 |
-
outputs=[stock_plot
|
279 |
)
|
280 |
|
281 |
# 啟動應用
|
282 |
if __name__ == "__main__":
|
283 |
demo.launch(share=False)
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
import pandas as pd
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
12 |
import matplotlib as mpl
|
13 |
import matplotlib.font_manager as fm
|
14 |
+
import tempfile
|
15 |
+
import os
|
16 |
+
import yfinance as yf
|
17 |
+
import logging
|
18 |
+
from datetime import datetime, timedelta
|
19 |
|
20 |
# 設置日志
|
21 |
logging.basicConfig(level=logging.INFO,
|
|
|
47 |
'Upgrade-Insecure-Requests': '1'
|
48 |
}
|
49 |
|
50 |
+
def fetch_stock_categories():
|
51 |
try:
|
52 |
url = "https://tw.stock.yahoo.com/class/"
|
53 |
+
response = requests.get(url, headers=headers, timeout=10)
|
54 |
+
response.raise_for_status()
|
55 |
+
|
56 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
57 |
+
main_categories = soup.find_all('div', class_='C($c-link-text)')
|
58 |
+
|
59 |
+
data = []
|
60 |
+
for category in main_categories:
|
61 |
+
main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
|
62 |
+
if main_category_name:
|
63 |
+
main_category_name = main_category_name.text.strip()
|
64 |
+
sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
for sub_category in sub_categories:
|
67 |
+
data.append({
|
68 |
+
'台股': main_category_name,
|
69 |
+
'類股': sub_category.text.strip(),
|
70 |
+
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
71 |
+
})
|
72 |
+
|
73 |
+
category_dict = {}
|
74 |
+
for item in data:
|
75 |
+
if item['台股'] not in category_dict:
|
76 |
+
category_dict[item['台股']] = []
|
77 |
+
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
78 |
+
|
79 |
+
return category_dict
|
80 |
except Exception as e:
|
81 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
82 |
return {}
|
83 |
|
84 |
+
# 股票預測模型類別保持不變...
|
85 |
class StockPredictor:
|
86 |
def __init__(self):
|
87 |
self.model = None
|
88 |
self.scaler = MinMaxScaler()
|
89 |
|
90 |
+
def prepare_data(self, df):
|
91 |
+
features = ['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']
|
92 |
+
scaled_data = self.scaler.fit_transform(df[features])
|
93 |
|
94 |
X, y = [], []
|
95 |
for i in range(len(scaled_data) - 1):
|
96 |
X.append(scaled_data[i])
|
97 |
+
y.append(scaled_data[i+1, [0, 3]]) # Open和Close的索引
|
98 |
|
99 |
+
return np.array(X).reshape(-1, 1, len(features)), np.array(y)
|
100 |
|
101 |
def build_model(self, input_shape):
|
102 |
model = Sequential([
|
|
|
104 |
Dropout(0.2),
|
105 |
LSTM(50, activation='relu'),
|
106 |
Dropout(0.2),
|
107 |
+
Dense(2)
|
108 |
])
|
109 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
110 |
return model
|
111 |
|
112 |
+
def train(self, df):
|
113 |
+
X, y = self.prepare_data(df)
|
114 |
self.model = self.build_model((1, X.shape[2]))
|
115 |
history = self.model.fit(
|
116 |
X, y,
|
|
|
129 |
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
130 |
predictions.append(next_day[0])
|
131 |
|
132 |
+
current_data = current_data.flatten()
|
133 |
+
current_data[0] = next_day[0][0]
|
134 |
+
current_data[3] = next_day[0][1]
|
135 |
+
current_data = current_data.reshape(1, -1)
|
136 |
|
137 |
return np.array(predictions)
|
138 |
|
139 |
# Gradio界面函數
|
140 |
+
def update_stocks(category):
|
141 |
if not category or category not in category_dict:
|
142 |
return []
|
143 |
return [item['類股'] for item in category_dict[category]]
|
144 |
|
145 |
+
def get_stock_items(url):
|
146 |
try:
|
147 |
+
response = requests.get(url, headers=headers, timeout=10)
|
148 |
+
response.raise_for_status()
|
149 |
+
|
150 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
151 |
+
stock_items = soup.find_all('li', class_='List(n)')
|
152 |
+
|
153 |
+
stocks_dict = {}
|
154 |
+
for item in stock_items:
|
155 |
+
stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
|
156 |
+
stock_code = item.find('span', class_='Fz(14px) C(#979ba7) Ell')
|
157 |
+
if stock_name and stock_code:
|
158 |
+
full_code = stock_code.text.strip()
|
159 |
+
display_code = full_code.split('.')[0]
|
160 |
+
display_name = f"{stock_name.text.strip()}{display_code}"
|
161 |
+
stocks_dict[display_name] = full_code
|
162 |
+
|
163 |
+
return stocks_dict
|
164 |
except Exception as e:
|
165 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
166 |
return {}
|
167 |
|
168 |
+
def update_category(category):
|
169 |
+
stocks = update_stocks(category)
|
170 |
+
return {
|
171 |
+
stock_dropdown: gr.update(choices=stocks, value=None),
|
172 |
+
stock_item_dropdown: gr.update(choices=[], value=None),
|
173 |
+
stock_plot: gr.update(value=None)
|
174 |
+
}
|
175 |
+
|
176 |
+
def update_stock(category, stock):
|
177 |
+
if not category or not stock:
|
178 |
+
return {
|
179 |
+
stock_item_dropdown: gr.update(choices=[], value=None),
|
180 |
+
stock_plot: gr.update(value=None)
|
181 |
+
}
|
182 |
+
|
183 |
+
url = next((item['網址'] for item in category_dict.get(category, [])
|
184 |
+
if item['類股'] == stock), None)
|
185 |
+
|
186 |
+
if url:
|
187 |
+
stock_items = get_stock_items(url)
|
188 |
+
return {
|
189 |
+
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
190 |
+
stock_plot: gr.update(value=None)
|
191 |
+
}
|
192 |
+
return {
|
193 |
+
stock_item_dropdown: gr.update(choices=[], value=None),
|
194 |
+
stock_plot: gr.update(value=None)
|
195 |
+
}
|
196 |
+
|
197 |
+
def predict_stock(category, stock, stock_item):
|
198 |
if not all([category, stock, stock_item]):
|
199 |
+
return gr.update(value=None)
|
200 |
|
201 |
try:
|
202 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
203 |
if item['類股'] == stock), None)
|
204 |
if not url:
|
205 |
+
return gr.update(value=None)
|
206 |
|
207 |
+
stock_items = get_stock_items(url)
|
208 |
stock_code = stock_items.get(stock_item, "")
|
209 |
|
210 |
if not stock_code:
|
211 |
+
return gr.update(value=None)
|
212 |
|
213 |
+
# 下載股票數據
|
214 |
+
df = yf.download(stock_code, period="1y")
|
215 |
if df.empty:
|
216 |
raise ValueError("無法獲取股票數據")
|
217 |
|
218 |
# 預測
|
219 |
predictor = StockPredictor()
|
220 |
+
predictor.train(df)
|
221 |
|
222 |
+
last_data = predictor.scaler.transform(df.iloc[-1:][['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']])
|
223 |
predictions = predictor.predict(last_data[0], 5)
|
224 |
|
225 |
+
# 反轉預測結果
|
226 |
+
last_original = df[['Open', 'Close']].iloc[-1].values
|
227 |
+
predictions_original = predictor.scaler.inverse_transform(
|
228 |
+
np.hstack([predictions, np.zeros((predictions.shape[0], 4))])
|
229 |
+
)[:, :2]
|
230 |
+
all_predictions = np.vstack([last_original, predictions_original])
|
231 |
+
|
232 |
# 創建日期指標
|
233 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
234 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
235 |
|
236 |
+
# 繪圖
|
237 |
+
fig, ax = plt.subplots(figsize=(14, 7))
|
238 |
+
colors = ['#FF9999', '#66B2FF']
|
239 |
+
labels = ['預測開盤價', '預測收盤價']
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
for i, (col, label, color) in enumerate(zip(['Open', 'Close'], labels, colors)):
|
242 |
+
ax.plot(date_labels, all_predictions[:, i], label=label,
|
243 |
+
marker='o', color=color, linewidth=2)
|
244 |
+
for j, value in enumerate(all_predictions[:, i]):
|
245 |
+
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
246 |
+
textcoords="offset points", xytext=(0,10),
|
247 |
+
ha='center', va='bottom')
|
248 |
+
|
249 |
+
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
250 |
+
ax.set_xlabel('日期', labelpad=10)
|
251 |
+
ax.set_ylabel('股價', labelpad=10)
|
252 |
+
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
253 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
254 |
|
255 |
+
plt.tight_layout()
|
256 |
+
return gr.update(value=fig)
|
257 |
|
258 |
except Exception as e:
|
259 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
260 |
+
return gr.update(value=None)
|
261 |
|
262 |
# 初始化
|
263 |
setup_font()
|
264 |
+
category_dict = fetch_stock_categories()
|
265 |
categories = list(category_dict.keys())
|
266 |
|
267 |
# Gradio界面
|
|
|
284 |
label="股票",
|
285 |
value=None
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
predict_button = gr.Button("開始預測", variant="primary")
|
|
|
288 |
|
289 |
with gr.Row():
|
290 |
+
stock_plot = gr.Plot(label="股價預測圖")
|
291 |
|
292 |
# 事件綁定
|
293 |
category_dropdown.change(
|
294 |
+
update_category,
|
295 |
inputs=[category_dropdown],
|
296 |
+
outputs=[stock_dropdown, stock_item_dropdown, stock_plot]
|
297 |
)
|
298 |
|
299 |
stock_dropdown.change(
|
300 |
+
update_stock,
|
301 |
+
inputs=[category_dropdown, stock_dropdown],
|
302 |
+
outputs=[stock_item_dropdown, stock_plot]
|
303 |
)
|
304 |
|
305 |
predict_button.click(
|
306 |
predict_stock,
|
307 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown],
|
308 |
+
outputs=[stock_plot]
|
309 |
)
|
310 |
|
311 |
# 啟動應用
|
312 |
if __name__ == "__main__":
|
313 |
demo.launch(share=False)
|
314 |
+
|