Spaces:
Running
Running
Commit
·
73cc4bb
1
Parent(s):
999c140
app.py
CHANGED
@@ -7,6 +7,7 @@ from sklearn.preprocessing import MinMaxScaler
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import io
|
12 |
import matplotlib as mpl
|
@@ -16,9 +17,8 @@ import os
|
|
16 |
import yfinance as yf
|
17 |
import logging
|
18 |
from datetime import datetime, timedelta
|
19 |
-
from prophet import Prophet
|
20 |
|
21 |
-
#
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
|
@@ -82,21 +82,21 @@ def fetch_stock_categories():
|
|
82 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
83 |
return {}
|
84 |
|
85 |
-
#
|
86 |
class StockPredictor:
|
87 |
def __init__(self):
|
88 |
self.model = None
|
89 |
self.scaler = MinMaxScaler()
|
90 |
|
91 |
-
def prepare_data(self, df,
|
92 |
-
scaled_data = self.scaler.fit_transform(df[
|
93 |
|
94 |
X, y = [], []
|
95 |
for i in range(len(scaled_data) - 1):
|
96 |
X.append(scaled_data[i])
|
97 |
-
y.append(scaled_data[i+1])
|
98 |
|
99 |
-
return np.array(X).reshape(-1, 1, len(
|
100 |
|
101 |
def build_model(self, input_shape):
|
102 |
model = Sequential([
|
@@ -104,13 +104,13 @@ class StockPredictor:
|
|
104 |
Dropout(0.2),
|
105 |
LSTM(50, activation='relu'),
|
106 |
Dropout(0.2),
|
107 |
-
Dense(
|
108 |
])
|
109 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
110 |
return model
|
111 |
|
112 |
-
def train(self, df,
|
113 |
-
X, y = self.prepare_data(df,
|
114 |
self.model = self.build_model((1, X.shape[2]))
|
115 |
history = self.model.fit(
|
116 |
X, y,
|
@@ -130,7 +130,8 @@ class StockPredictor:
|
|
130 |
predictions.append(next_day[0])
|
131 |
|
132 |
current_data = current_data.flatten()
|
133 |
-
current_data[
|
|
|
134 |
current_data = current_data.reshape(1, -1)
|
135 |
|
136 |
return np.array(predictions)
|
@@ -169,16 +170,14 @@ def update_category(category):
|
|
169 |
return {
|
170 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
171 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
172 |
-
stock_plot: gr.update(value=None)
|
173 |
-
status_output: gr.update(value="")
|
174 |
}
|
175 |
|
176 |
def update_stock(category, stock):
|
177 |
if not category or not stock:
|
178 |
return {
|
179 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
180 |
-
stock_plot: gr.update(value=None)
|
181 |
-
status_output: gr.update(value="")
|
182 |
}
|
183 |
|
184 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
@@ -188,105 +187,87 @@ def update_stock(category, stock):
|
|
188 |
stock_items = get_stock_items(url)
|
189 |
return {
|
190 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
191 |
-
stock_plot: gr.update(value=None)
|
192 |
-
status_output: gr.update(value="")
|
193 |
}
|
194 |
return {
|
195 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
196 |
-
stock_plot: gr.update(value=None)
|
197 |
-
status_output: gr.update(value="")
|
198 |
}
|
199 |
|
200 |
-
def predict_stock(category, stock, stock_item,
|
201 |
if not all([category, stock, stock_item]):
|
202 |
-
return gr.update(value=None)
|
203 |
|
204 |
try:
|
205 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
206 |
if item['類股'] == stock), None)
|
207 |
if not url:
|
208 |
-
return gr.update(value=None)
|
209 |
|
210 |
stock_items = get_stock_items(url)
|
211 |
stock_code = stock_items.get(stock_item, "")
|
212 |
-
|
213 |
if not stock_code:
|
214 |
-
return gr.update(value=None)
|
215 |
-
|
216 |
-
#
|
217 |
-
df = yf.download(stock_code, period=
|
218 |
if df.empty:
|
219 |
raise ValueError("無法獲取股票數據")
|
220 |
|
221 |
-
#
|
222 |
-
if
|
223 |
predictor = StockPredictor()
|
224 |
-
predictor.train(df,
|
225 |
-
last_data = predictor.scaler.transform(df
|
226 |
predictions = predictor.predict(last_data[0], 5)
|
227 |
-
|
228 |
# 反轉預測結果
|
229 |
-
last_original = df[
|
230 |
predictions_original = predictor.scaler.inverse_transform(
|
231 |
-
np.
|
232 |
-
)
|
233 |
-
all_predictions = np.vstack([last_original, predictions_original
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
# 創建日期索引
|
236 |
-
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
237 |
-
date_labels = [d.strftime('%m/%d') for d in dates]
|
238 |
-
|
239 |
-
# 繪圖
|
240 |
-
fig, ax = plt.subplots(figsize=(14, 7))
|
241 |
-
for i, feature in enumerate(selected_features):
|
242 |
-
ax.plot(date_labels, all_predictions[:, i], label=f'預測{feature}', marker='o', linewidth=2)
|
243 |
-
for j, value in enumerate(all_predictions[:, i]):
|
244 |
-
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
245 |
-
textcoords="offset points", xytext=(0,10),
|
246 |
-
ha='center', va='bottom')
|
247 |
-
|
248 |
-
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
249 |
-
ax.set_xlabel('日期', labelpad=10)
|
250 |
-
ax.set_ylabel('股價', labelpad=10)
|
251 |
-
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
252 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
253 |
-
plt.tight_layout()
|
254 |
-
return gr.update(value=fig), "預測成功"
|
255 |
-
|
256 |
-
elif model_choice == "Prophet":
|
257 |
-
if 'Close' not in selected_features:
|
258 |
-
return gr.update(value=None), "Prophet 模型僅支持 'Close' 特徵"
|
259 |
-
|
260 |
-
prophet_df = df.reset_index()[['Date', 'Close']]
|
261 |
-
prophet_df.rename(columns={'Date': 'ds', 'Close': 'y'}, inplace=True)
|
262 |
-
|
263 |
-
model = Prophet()
|
264 |
-
model.fit(prophet_df)
|
265 |
-
|
266 |
-
future = model.make_future_dataframe(periods=5)
|
267 |
-
forecast = model.predict(future)
|
268 |
-
|
269 |
-
# 取出日期和預測結果
|
270 |
-
date_labels = forecast['ds'].tail(6).dt.strftime('%m/%d').tolist()
|
271 |
-
predictions = forecast['yhat'].tail(6).values
|
272 |
-
|
273 |
-
# 繪圖
|
274 |
-
fig, ax = plt.subplots(figsize=(14, 7))
|
275 |
-
ax.plot(date_labels, predictions, label="預測股價", marker='o', color='#FF9999', linewidth=2)
|
276 |
-
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
277 |
-
ax.set_xlabel('日期', labelpad=10)
|
278 |
-
ax.set_ylabel('股價', labelpad=10)
|
279 |
-
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
280 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
281 |
-
plt.tight_layout()
|
282 |
-
return gr.update(value=fig), "預測成功"
|
283 |
-
|
284 |
-
else:
|
285 |
-
return gr.update(value=None), "未知的模型選擇"
|
286 |
-
|
287 |
except Exception as e:
|
288 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
289 |
-
return gr.update(value=None)
|
290 |
|
291 |
# 初始化
|
292 |
setup_font()
|
@@ -314,43 +295,43 @@ with gr.Blocks() as demo:
|
|
314 |
value=None
|
315 |
)
|
316 |
period_dropdown = gr.Dropdown(
|
317 |
-
choices=["
|
318 |
label="抓取時間範圍",
|
319 |
value="1y"
|
320 |
)
|
321 |
-
|
322 |
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
323 |
label="選擇要用於預測的特徵",
|
324 |
value=['Open', 'Close']
|
325 |
)
|
326 |
-
|
327 |
choices=["LSTM", "Prophet"],
|
328 |
label="選擇預測模型",
|
329 |
value="LSTM"
|
330 |
)
|
331 |
predict_button = gr.Button("開始預測", variant="primary")
|
332 |
-
status_output = gr.Textbox(label="狀態", interactive=False)
|
333 |
|
334 |
with gr.Row():
|
335 |
stock_plot = gr.Plot(label="股價預測圖")
|
336 |
-
|
|
|
337 |
# 事件綁定
|
338 |
category_dropdown.change(
|
339 |
update_category,
|
340 |
inputs=[category_dropdown],
|
341 |
-
outputs=[stock_dropdown, stock_item_dropdown, stock_plot
|
342 |
)
|
343 |
-
|
344 |
stock_dropdown.change(
|
345 |
update_stock,
|
346 |
inputs=[category_dropdown, stock_dropdown],
|
347 |
-
outputs=[stock_item_dropdown, stock_plot
|
348 |
)
|
349 |
-
|
350 |
predict_button.click(
|
351 |
predict_stock,
|
352 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown,
|
353 |
-
outputs=[stock_plot,
|
354 |
)
|
355 |
|
356 |
# 啟動應用
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
+
from prophet import Prophet
|
11 |
import matplotlib.pyplot as plt
|
12 |
import io
|
13 |
import matplotlib as mpl
|
|
|
17 |
import yfinance as yf
|
18 |
import logging
|
19 |
from datetime import datetime, timedelta
|
|
|
20 |
|
21 |
+
# 設置日志
|
22 |
logging.basicConfig(level=logging.INFO,
|
23 |
format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
|
|
|
82 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
83 |
return {}
|
84 |
|
85 |
+
# 股票預測模型類別保持不變...
|
86 |
class StockPredictor:
|
87 |
def __init__(self):
|
88 |
self.model = None
|
89 |
self.scaler = MinMaxScaler()
|
90 |
|
91 |
+
def prepare_data(self, df, features):
|
92 |
+
scaled_data = self.scaler.fit_transform(df[features])
|
93 |
|
94 |
X, y = [], []
|
95 |
for i in range(len(scaled_data) - 1):
|
96 |
X.append(scaled_data[i])
|
97 |
+
y.append(scaled_data[i+1, [0, 3]]) # Open和Close的索引
|
98 |
|
99 |
+
return np.array(X).reshape(-1, 1, len(features)), np.array(y)
|
100 |
|
101 |
def build_model(self, input_shape):
|
102 |
model = Sequential([
|
|
|
104 |
Dropout(0.2),
|
105 |
LSTM(50, activation='relu'),
|
106 |
Dropout(0.2),
|
107 |
+
Dense(2)
|
108 |
])
|
109 |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
|
110 |
return model
|
111 |
|
112 |
+
def train(self, df, features):
|
113 |
+
X, y = self.prepare_data(df, features)
|
114 |
self.model = self.build_model((1, X.shape[2]))
|
115 |
history = self.model.fit(
|
116 |
X, y,
|
|
|
130 |
predictions.append(next_day[0])
|
131 |
|
132 |
current_data = current_data.flatten()
|
133 |
+
current_data[0] = next_day[0][0]
|
134 |
+
current_data[3] = next_day[0][1]
|
135 |
current_data = current_data.reshape(1, -1)
|
136 |
|
137 |
return np.array(predictions)
|
|
|
170 |
return {
|
171 |
stock_dropdown: gr.update(choices=stocks, value=None),
|
172 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
173 |
+
stock_plot: gr.update(value=None)
|
|
|
174 |
}
|
175 |
|
176 |
def update_stock(category, stock):
|
177 |
if not category or not stock:
|
178 |
return {
|
179 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
180 |
+
stock_plot: gr.update(value=None)
|
|
|
181 |
}
|
182 |
|
183 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
|
|
187 |
stock_items = get_stock_items(url)
|
188 |
return {
|
189 |
stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
|
190 |
+
stock_plot: gr.update(value=None)
|
|
|
191 |
}
|
192 |
return {
|
193 |
stock_item_dropdown: gr.update(choices=[], value=None),
|
194 |
+
stock_plot: gr.update(value=None)
|
|
|
195 |
}
|
196 |
|
197 |
+
def predict_stock(category, stock, stock_item, features, model_type):
|
198 |
if not all([category, stock, stock_item]):
|
199 |
+
return gr.update(value=None)
|
200 |
|
201 |
try:
|
202 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
203 |
if item['類股'] == stock), None)
|
204 |
if not url:
|
205 |
+
return gr.update(value=None)
|
206 |
|
207 |
stock_items = get_stock_items(url)
|
208 |
stock_code = stock_items.get(stock_item, "")
|
209 |
+
|
210 |
if not stock_code:
|
211 |
+
return gr.update(value=None)
|
212 |
+
|
213 |
+
# 下載股票數據
|
214 |
+
df = yf.download(stock_code, period="1y")
|
215 |
if df.empty:
|
216 |
raise ValueError("無法獲取股票數據")
|
217 |
|
218 |
+
# 預測
|
219 |
+
if model_type == "LSTM":
|
220 |
predictor = StockPredictor()
|
221 |
+
predictor.train(df, features)
|
222 |
+
last_data = predictor.scaler.transform(df.iloc[-1:][features])
|
223 |
predictions = predictor.predict(last_data[0], 5)
|
224 |
+
|
225 |
# 反轉預測結果
|
226 |
+
last_original = df[features].iloc[-1].values
|
227 |
predictions_original = predictor.scaler.inverse_transform(
|
228 |
+
np.hstack([predictions, np.zeros((predictions.shape[0], len(features) - 2))])
|
229 |
+
)[:, :2]
|
230 |
+
all_predictions = np.vstack([last_original, predictions_original])
|
231 |
+
|
232 |
+
elif model_type == "Prophet":
|
233 |
+
prophet_df = df.reset_index()[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
|
234 |
+
m = Prophet()
|
235 |
+
m.fit(prophet_df)
|
236 |
+
future = m.make_future_dataframe(periods=5)
|
237 |
+
forecast = m.predict(future)
|
238 |
+
all_predictions = forecast[['ds', 'yhat']].tail(6)
|
239 |
+
date_labels = all_predictions['ds'].dt.strftime('%m/%d').tolist()
|
240 |
+
all_predictions = all_predictions['yhat'].values
|
241 |
+
|
242 |
+
# 創建日期索引
|
243 |
+
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
244 |
+
date_labels = [d.strftime('%m/%d') for d in dates]
|
245 |
+
|
246 |
+
# 繪圖
|
247 |
+
fig, ax = plt.subplots(figsize=(14, 7))
|
248 |
+
colors = ['#FF9999', '#66B2FF']
|
249 |
+
labels = ['預測開盤價', '預測收盤價']
|
250 |
+
|
251 |
+
for i, (label, color) in enumerate(zip(labels, colors)):
|
252 |
+
ax.plot(date_labels, all_predictions if model_type == "Prophet" else all_predictions[:, i],
|
253 |
+
label=label, marker='o', color=color, linewidth=2)
|
254 |
+
for j, value in enumerate(all_predictions if model_type == "Prophet" else all_predictions[:, i]):
|
255 |
+
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
256 |
+
textcoords="offset points", xytext=(0,10),
|
257 |
+
ha='center', va='bottom')
|
258 |
+
|
259 |
+
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
260 |
+
ax.set_xlabel('日期', labelpad=10)
|
261 |
+
ax.set_ylabel('股價', labelpad=10)
|
262 |
+
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
263 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
264 |
+
|
265 |
+
plt.tight_layout()
|
266 |
+
return gr.update(value=fig)
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
except Exception as e:
|
269 |
logging.error(f"預測過程發生錯誤: {str(e)}")
|
270 |
+
return gr.update(value=None)
|
271 |
|
272 |
# 初始化
|
273 |
setup_font()
|
|
|
295 |
value=None
|
296 |
)
|
297 |
period_dropdown = gr.Dropdown(
|
298 |
+
choices=["1mo", "3mo", "6mo", "1y"],
|
299 |
label="抓取時間範圍",
|
300 |
value="1y"
|
301 |
)
|
302 |
+
features_checkboxes = gr.CheckboxGroup(
|
303 |
choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
|
304 |
label="選擇要用於預測的特徵",
|
305 |
value=['Open', 'Close']
|
306 |
)
|
307 |
+
model_type_dropdown = gr.Dropdown(
|
308 |
choices=["LSTM", "Prophet"],
|
309 |
label="選擇預測模型",
|
310 |
value="LSTM"
|
311 |
)
|
312 |
predict_button = gr.Button("開始預測", variant="primary")
|
|
|
313 |
|
314 |
with gr.Row():
|
315 |
stock_plot = gr.Plot(label="股價預測圖")
|
316 |
+
status_textbox = gr.Textbox(label="狀態", value="")
|
317 |
+
|
318 |
# 事件綁定
|
319 |
category_dropdown.change(
|
320 |
update_category,
|
321 |
inputs=[category_dropdown],
|
322 |
+
outputs=[stock_dropdown, stock_item_dropdown, stock_plot]
|
323 |
)
|
324 |
+
|
325 |
stock_dropdown.change(
|
326 |
update_stock,
|
327 |
inputs=[category_dropdown, stock_dropdown],
|
328 |
+
outputs=[stock_item_dropdown, stock_plot]
|
329 |
)
|
330 |
+
|
331 |
predict_button.click(
|
332 |
predict_stock,
|
333 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, features_checkboxes, model_type_dropdown],
|
334 |
+
outputs=[stock_plot, status_textbox]
|
335 |
)
|
336 |
|
337 |
# 啟動應用
|