tboen1 commited on
Commit
b62ff1e
·
verified ·
1 Parent(s): a8840ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -19
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import textgrad as tg
3
  import os
4
 
5
- tg.set_backward_engine(tg.get_engine("gpt-4o"), override = True)
6
 
7
  # Hardcoded examples
8
  default_initial_solution = """To solve the equation 3x^2 - 7x + 2 = 0, we use the quadratic formula:
@@ -29,21 +29,23 @@ initial_solution = st.text_area("Initial Solution", st.session_state.get("initia
29
  loss_system_prompt = st.text_area("Loss System Prompt", st.session_state.get("loss_system_prompt", ""))
30
  num_epochs = st.number_input("Epochs", min_value=1, value=1)
31
 
32
- # Set up the textgrad variables
33
- solution = tg.Variable(initial_solution,
34
- requires_grad=True,
35
- role_description="solution to the math question")
36
-
37
- loss_fn = tg.TextLoss(tg.Variable(loss_system_prompt,
38
- requires_grad=False,
39
- role_description="system prompt"))
40
- optimizer = tg.TGD([solution])
41
-
42
- # Training loop
43
- for i in range(num_epochs):
44
- loss = loss_fn(solution)
45
- loss.backward()
46
- optimizer.step()
47
-
48
- # Output box
49
- st.text_area("Result", solution.value)
 
 
 
2
  import textgrad as tg
3
  import os
4
 
5
+ tg.set_backward_engine(tg.get_engine("gpt-4o"))
6
 
7
  # Hardcoded examples
8
  default_initial_solution = """To solve the equation 3x^2 - 7x + 2 = 0, we use the quadratic formula:
 
29
  loss_system_prompt = st.text_area("Loss System Prompt", st.session_state.get("loss_system_prompt", ""))
30
  num_epochs = st.number_input("Epochs", min_value=1, value=1)
31
 
32
+ # Enter button
33
+ if st.button("Enter"):
34
+ # Set up the textgrad variables
35
+ solution = tg.Variable(initial_solution,
36
+ requires_grad=True,
37
+ role_description="solution to the math question")
38
+
39
+ loss_fn = tg.TextLoss(tg.Variable(loss_system_prompt,
40
+ requires_grad=False,
41
+ role_description="system prompt"))
42
+ optimizer = tg.TGD([solution])
43
+
44
+ # Training loop
45
+ for i in range(num_epochs):
46
+ loss = loss_fn(solution)
47
+ loss.backward()
48
+ optimizer.step()
49
+
50
+ # Output box
51
+ st.text_area("Result", solution.value)