Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
2 |
import onnxruntime as rt
|
3 |
from transformers import AutoTokenizer
|
4 |
import torch, json
|
5 |
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
7 |
|
8 |
with open("genre_types_encoded.json", "r") as fp:
|
9 |
encode_genre_types = json.load(fp)
|
@@ -14,14 +14,13 @@ inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
|
|
14 |
input_name = inf_session.get_inputs()[0].name
|
15 |
output_name = inf_session.get_outputs()[0].name
|
16 |
|
17 |
-
def classify_movie_genre(
|
18 |
-
input_ids = tokenizer(
|
19 |
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
20 |
logits = torch.FloatTensor(logits)
|
21 |
probs = torch.sigmoid(logits)[0]
|
22 |
return dict(zip(genres, map(float, probs)))
|
23 |
|
24 |
-
label =
|
25 |
-
iface =
|
26 |
iface.launch(inline=False)
|
27 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import onnxruntime as rt
|
3 |
from transformers import AutoTokenizer
|
4 |
import torch, json
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
7 |
|
8 |
with open("genre_types_encoded.json", "r") as fp:
|
9 |
encode_genre_types = json.load(fp)
|
|
|
14 |
input_name = inf_session.get_inputs()[0].name
|
15 |
output_name = inf_session.get_outputs()[0].name
|
16 |
|
17 |
+
def classify_movie_genre(sinopse):
|
18 |
+
input_ids = tokenizer(sinopse)['input_ids'][:512]
|
19 |
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
20 |
logits = torch.FloatTensor(logits)
|
21 |
probs = torch.sigmoid(logits)[0]
|
22 |
return dict(zip(genres, map(float, probs)))
|
23 |
|
24 |
+
label = gr.outputs.Label(num_top_classes=5)
|
25 |
+
iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
|
26 |
iface.launch(inline=False)
|
|