tclopess commited on
Commit
b881e33
·
verified ·
1 Parent(s): d67b635

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -1
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import gradio as gr
2
  import onnxruntime as rt
3
  from transformers import AutoTokenizer
4
  import torch, json
@@ -23,4 +23,47 @@ def classify_movie_genre(sinopse):
23
 
24
  label = gr.outputs.Label(num_top_classes=5)
25
  iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  iface.launch(inline=False)
 
1
+ """import gradio as gr
2
  import onnxruntime as rt
3
  from transformers import AutoTokenizer
4
  import torch, json
 
23
 
24
  label = gr.outputs.Label(num_top_classes=5)
25
  iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
26
+ iface.launch(inline=False)"""
27
+
28
+ import gradio as gr
29
+ import onnxruntime as rt
30
+ from transformers import AutoTokenizer
31
+ import torch, json
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-large-portuguese-cased")
34
+
35
+ with open("genre_types_encoded.json", "r") as fp:
36
+ encode_genre_types = json.load(fp)
37
+
38
+ genres = list(encode_genre_types.keys())
39
+
40
+ inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
41
+ input_name = inf_session.get_inputs()[0].name
42
+ output_name = inf_session.get_outputs()[0].name
43
+
44
+ def classify_movie_genre(sinopse):
45
+ input_ids = tokenizer(sinopse)['input_ids'][:512]
46
+ logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
47
+ logits = torch.FloatTensor(logits)
48
+ probs = torch.sigmoid(logits)[0]
49
+ return dict(zip(genres, map(float, probs)))
50
+
51
+
52
+ app_examples = [
53
+ ["asasasa"],
54
+ ["ddddd"],
55
+ ["fffff"],
56
+ ["ggggg"],
57
+ ["aaaaaa"]
58
+
59
+ ]
60
+
61
+ inputs = [
62
+ gr.Textbox(label="text", value=app_examples[0][0]),
63
+
64
+ ]
65
+
66
+
67
+ label = gr.outputs.Label(num_top_classes=4)
68
+ iface = gr.Interface(fn=classify_movie_genre, inputs=inputs, outputs=label, examples=app_examples)
69
  iface.launch(inline=False)