Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,12 @@
|
|
1 |
-
"""
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
|
6 |
-
|
7 |
-
pipe = pipeline('sentiment-analysis', model=model)
|
8 |
|
9 |
def get_sentiment(input_text):
|
10 |
return pipe(input_text)
|
11 |
|
12 |
-
iface = gr.Interface(fn=get_sentiment,
|
13 |
-
inputs='text',
|
14 |
-
outputs=['text'],
|
15 |
-
title='Sentiment Analysis',
|
16 |
-
description='Obtenha o sentimento do texto de entrada:'
|
17 |
-
)
|
18 |
-
|
19 |
-
iface.launch(inline=False)"""
|
20 |
-
|
21 |
-
from transformers import pipeline
|
22 |
-
import gradio as gr
|
23 |
-
import torch
|
24 |
-
|
25 |
-
model = "neuralmind/bert-base-portuguese-cased"
|
26 |
-
pipe = pipeline('sentiment-analysis', model=model)
|
27 |
-
|
28 |
-
def get_sentiment(input_text):
|
29 |
-
return pipe(input_text)
|
30 |
-
|
31 |
-
results = pipe(input_text)
|
32 |
-
|
33 |
-
# Extract the label and score
|
34 |
-
label = results[0]['label']
|
35 |
-
score = results[0]['score']
|
36 |
-
|
37 |
-
threshold = 0.5
|
38 |
-
|
39 |
-
if label == 'LABEL_1' and score > sentiment_threshold: # Positive sentiment
|
40 |
-
return 'POSITIVO'
|
41 |
-
else: label == 'LABEL_0' and score <= sentiment_threshold: # Negative sentiment
|
42 |
-
return 'NEGATIVO'
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
iface = gr.Interface(fn=get_sentiment,
|
47 |
inputs='text',
|
48 |
outputs='text',
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
|
5 |
+
pipe = pipeline('sentiment-analysis')
|
|
|
6 |
|
7 |
def get_sentiment(input_text):
|
8 |
return pipe(input_text)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
iface = gr.Interface(fn=get_sentiment,
|
11 |
inputs='text',
|
12 |
outputs='text',
|