Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
import torch
|
@@ -15,4 +16,38 @@ iface = gr.Interface(fn=get_sentiment,
|
|
15 |
description='Obtenha o sentimento do texto de entrada:'
|
16 |
)
|
17 |
|
18 |
-
iface.launch(inline=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
16 |
description='Obtenha o sentimento do texto de entrada:'
|
17 |
)
|
18 |
|
19 |
+
iface.launch(inline=False)"""
|
20 |
+
|
21 |
+
from transformers import pipeline
|
22 |
+
import gradio as gr
|
23 |
+
import torch
|
24 |
+
|
25 |
+
model = "neuralmind/bert-base-portuguese-cased"
|
26 |
+
pipe = pipeline('sentiment-analysis', model=model)
|
27 |
+
|
28 |
+
def get_sentiment(input_text):
|
29 |
+
return pipe(input_text)
|
30 |
+
|
31 |
+
results = pipe(input_text)
|
32 |
+
|
33 |
+
# Extract the label and score
|
34 |
+
label = results[0]['label']
|
35 |
+
score = results[0]['score']
|
36 |
+
|
37 |
+
threshold = 0.5
|
38 |
+
|
39 |
+
if label == 'LABEL_1' and score > sentiment_threshold: # Positive sentiment
|
40 |
+
return 'POSITIVO'
|
41 |
+
else label == 'LABEL_0' and score <= sentiment_threshold: # Negative sentiment
|
42 |
+
return 'NEGATIVO'
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
iface = gr.Interface(fn=get_sentiment,
|
47 |
+
inputs='text',
|
48 |
+
outputs='text',
|
49 |
+
title='Sentiment Analysis',
|
50 |
+
description='Obtenha o sentimento do texto de entrada:'
|
51 |
+
)
|
52 |
+
|
53 |
+
iface.launch(inline=False)
|