Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -58,58 +58,60 @@ def get_image_md5(img: Image.Image):
|
|
58 |
hex_digest = hash_md5.hexdigest()
|
59 |
return hex_digest
|
60 |
|
61 |
-
def calculate_md5_from_pdf_path(pdf_file_path):
|
62 |
-
hash_md5 = hashlib.md5()
|
63 |
-
with open(pdf_file_path, "rb") as f:
|
64 |
-
file_content = f.read()
|
65 |
-
hash_md5.update(file_content)
|
66 |
-
return hash_md5.hexdigest()
|
67 |
-
|
68 |
@spaces.GPU
|
69 |
-
def add_pdf_gradio(
|
70 |
global model, tokenizer
|
71 |
model.eval()
|
72 |
-
|
73 |
-
|
74 |
-
knowledge_base_name = calculate_md5_from_pdf_path(pdf_file_path)
|
75 |
|
|
|
|
|
76 |
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
|
77 |
os.makedirs(this_cache_dir, exist_ok=True)
|
|
|
78 |
|
79 |
-
|
80 |
-
with open(pdf_file_path,
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
|
110 |
-
for item in
|
111 |
f.write(item+'\n')
|
112 |
-
|
113 |
return knowledge_base_name
|
114 |
|
115 |
@spaces.GPU
|
@@ -128,7 +130,8 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
128 |
for line in f:
|
129 |
md5s.append(line.rstrip('\n'))
|
130 |
|
131 |
-
|
|
|
132 |
|
133 |
query_with_instruction = "Represent this query for retrieving relevant document: " + query
|
134 |
with torch.no_grad():
|
@@ -262,7 +265,7 @@ with gr.Blocks() as app:
|
|
262 |
gr.Markdown("Thank you very much to [@bokesyo](https://huggingface.co/bokesyo) for writing the code.")
|
263 |
|
264 |
with gr.Row():
|
265 |
-
file_input = gr.File(file_types=["pdf"], label="Step 1: Upload PDF")
|
266 |
file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
|
267 |
process_button = gr.Button("Process PDF (Don't click until PDF uploaded successfully)")
|
268 |
|
|
|
58 |
hex_digest = hash_md5.hexdigest()
|
59 |
return hex_digest
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
@spaces.GPU
|
62 |
+
def add_pdf_gradio(pdf_file_list, progress=gr.Progress()):
|
63 |
global model, tokenizer
|
64 |
model.eval()
|
65 |
+
|
66 |
+
print(pdf_file_list)
|
|
|
67 |
|
68 |
+
pdf_file_list = sorted(pdf_file_list)
|
69 |
+
knowledge_base_name = str(int(time.time()))
|
70 |
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
|
71 |
os.makedirs(this_cache_dir, exist_ok=True)
|
72 |
+
global_image_md5s = []
|
73 |
|
74 |
+
for pdf_file_path in pdf_file_list:
|
75 |
+
with open(os.path.join(this_cache_dir, os.path.basename(pdf_file_path)), 'wb') as file1:
|
76 |
+
with open(pdf_file_path, "rb") as file2:
|
77 |
+
file1.write(file2.read())
|
78 |
|
79 |
+
for pdf_file_path in pdf_file_list:
|
80 |
+
|
81 |
+
print(f"Processing {pdf_file_path}")
|
82 |
+
|
83 |
+
dpi = 200
|
84 |
+
doc = fitz.open(pdf_file_path)
|
85 |
+
|
86 |
+
image_md5s = []
|
87 |
+
reps_list = []
|
88 |
+
images = []
|
89 |
+
|
90 |
+
for page in progress.tqdm(doc):
|
91 |
+
# with self.lock: # because we hope one 16G gpu only process one image at the same time
|
92 |
+
pix = page.get_pixmap(dpi=dpi)
|
93 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
94 |
+
image_md5 = get_image_md5(image)
|
95 |
+
image_md5s.append(image_md5)
|
96 |
+
with torch.no_grad():
|
97 |
+
reps = encode([image])
|
98 |
+
reps_list.append(reps)
|
99 |
+
images.append(image)
|
100 |
+
|
101 |
+
for idx in range(len(images)):
|
102 |
+
image = images[idx]
|
103 |
+
image_md5 = image_md5s[idx]
|
104 |
+
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
|
105 |
+
image.save(cache_image_path)
|
106 |
+
|
107 |
+
np.save(os.path.join(this_cache_dir, f"{os.path.basename(pdf_file_path).split('.')[0]}.npy"), reps_list)
|
108 |
+
|
109 |
+
global_image_md5s.extend(image_md5s)
|
110 |
|
111 |
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
|
112 |
+
for item in global_image_md5s:
|
113 |
f.write(item+'\n')
|
114 |
+
|
115 |
return knowledge_base_name
|
116 |
|
117 |
@spaces.GPU
|
|
|
130 |
for line in f:
|
131 |
md5s.append(line.rstrip('\n'))
|
132 |
|
133 |
+
doc_list = [f for f in os.listdir(target_cache_dir) if f.endswith('.npy')]
|
134 |
+
doc_list = sorted(doc_list)
|
135 |
|
136 |
query_with_instruction = "Represent this query for retrieving relevant document: " + query
|
137 |
with torch.no_grad():
|
|
|
265 |
gr.Markdown("Thank you very much to [@bokesyo](https://huggingface.co/bokesyo) for writing the code.")
|
266 |
|
267 |
with gr.Row():
|
268 |
+
file_input = gr.File(file_types=["pdf"], file_count="multiple", label="Step 1: Upload PDF")
|
269 |
file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
|
270 |
process_button = gr.Button("Process PDF (Don't click until PDF uploaded successfully)")
|
271 |
|