tcy6 commited on
Commit
f63f4f8
·
1 Parent(s): e0d20ad

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -67,6 +67,7 @@ def add_pdf_gradio(pdf_file_list, progress=gr.Progress()):
67
  print(pdf_file_list)
68
 
69
  pdf_file_list = sorted(pdf_file_list, key=lambda x: os.path.basename(x))
 
70
  knowledge_base_name = str(int(time.time()))
71
  this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
72
  os.makedirs(this_cache_dir, exist_ok=True)
@@ -142,7 +143,6 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
142
  query_md5 = hashlib.md5(query.encode()).hexdigest()
143
 
144
  doc_reps_cat = torch.cat([torch.Tensor(i) for i in doc_reps], dim=0)
145
- print(f"doc_reps_shape: {doc_reps.shape}")
146
  print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
147
  similarities = torch.matmul(query_rep, doc_reps_cat.T)
148
 
 
67
  print(pdf_file_list)
68
 
69
  pdf_file_list = sorted(pdf_file_list, key=lambda x: os.path.basename(x))
70
+ print(pdf_file_list)
71
  knowledge_base_name = str(int(time.time()))
72
  this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
73
  os.makedirs(this_cache_dir, exist_ok=True)
 
143
  query_md5 = hashlib.md5(query.encode()).hexdigest()
144
 
145
  doc_reps_cat = torch.cat([torch.Tensor(i) for i in doc_reps], dim=0)
 
146
  print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
147
  similarities = torch.matmul(query_rep, doc_reps_cat.T)
148