|
import os |
|
import typing |
|
|
|
from openai import OpenAI |
|
|
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
|
|
from django.contrib.postgres import fields |
|
from django.db import models |
|
|
|
|
|
class Quiz(models.Model): |
|
name = models.CharField(max_length=100) |
|
|
|
def __str__(self): |
|
return self.name |
|
|
|
|
|
class Question(models.Model): |
|
quiz = models.ForeignKey(Quiz, on_delete=models.CASCADE) |
|
prompt = models.CharField(max_length=200) |
|
rubrics = models.TextField( |
|
blank=True, null=True, verbose_name="Grading Rubrics - For LLM-graded questions only. You can leave this empty." |
|
) |
|
|
|
def __str__(self): |
|
return self.prompt |
|
|
|
def get_answer(self) -> typing.Union["Answer", None]: |
|
return ( |
|
getattr(self, "multiplechoiceanswer", None) |
|
or getattr(self, "freetextanswer", None) |
|
|
|
or self.llmgradedanswer |
|
) |
|
|
|
|
|
class Answer(models.Model): |
|
question = models.OneToOneField(Question, on_delete=models.CASCADE) |
|
|
|
class Meta: |
|
abstract = True |
|
|
|
def __str__(self) -> str: |
|
return ( |
|
getattr(self, "correct_answer", None) or getattr(self, "rubrics", None) or "No answer or rubrics provided" |
|
) |
|
|
|
def is_correct(self, user_answer) -> bool: |
|
return user_answer == getattr(self, "correct_answer", None) |
|
|
|
|
|
class FreeTextAnswer(Answer): |
|
correct_answer = models.CharField(max_length=200, default="") |
|
case_sensitive = models.BooleanField(default=False) |
|
|
|
def is_correct(self, user_answer) -> bool: |
|
if not self.case_sensitive: |
|
return user_answer.lower() == self.correct_answer.lower() |
|
return user_answer == self.correct_answer |
|
|
|
|
|
class LLMGradedAnswer(Answer): |
|
def grade(self, user_answer) -> dict: |
|
""" |
|
Grades the user's answer by calling the grading API. |
|
|
|
Args: |
|
user_answer (str): The answer provided by the user. |
|
|
|
Returns: |
|
dict: The result of the grading. |
|
""" |
|
try: |
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
prompt = f"Grade the following answer based on the rubric:\nRubric: {self.question.rubrics}\nAnswer: {user_answer}" |
|
|
|
response = client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
) |
|
|
|
return {"result": "success", "message": response.choices[0].message.content} |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
return {"result": "error", "message": str(e)} |
|
|
|
|
|
class MultipleChoiceAnswer(Answer): |
|
correct_answer = models.CharField(max_length=200, default="") |
|
choices = fields.ArrayField(models.CharField(max_length=200, blank=True)) |
|
|
|
def __str__(self) -> str: |
|
return f"{self.correct_answer} from {self.choices}" |
|
|
|
|
|
class LLMGradedAnswer(Answer): |
|
correct_answer = models.CharField(max_length=200, default="") |
|
|
|
def grade(self, user_answer) -> dict: |
|
""" |
|
Grades the user's answer by calling the grading API. |
|
|
|
Args: |
|
user_answer (str): The answer provided by the user. |
|
|
|
Returns: |
|
dict: The result of the grading. |
|
""" |
|
try: |
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
prompt = f"Grade the following answer based on the rubric:\nRubric: {self.question.rubrics}\nAnswer: {user_answer}" |
|
|
|
response = client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
) |
|
|
|
return {"result": "success", "message": response.choices[0].message.content} |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
return {"result": "error", "message": str(e)} |
|
|