import os import typing from openai import OpenAI client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) from django.contrib.postgres import fields from django.db import models class Quiz(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class Question(models.Model): quiz = models.ForeignKey(Quiz, on_delete=models.CASCADE) prompt = models.CharField(max_length=200) rubrics = models.TextField( blank=True, null=True, verbose_name="Grading Rubrics - For LLM-graded questions only. You can leave this empty." ) def __str__(self): return self.prompt def get_answer(self) -> typing.Union["Answer", None]: return ( getattr(self, "multiplechoiceanswer", None) or getattr(self, "freetextanswer", None) # or getattr(self, "llmgradedanswer", None) or self.llmgradedanswer # type: ignore ) class Answer(models.Model): question = models.OneToOneField(Question, on_delete=models.CASCADE) class Meta: abstract = True def __str__(self) -> str: return ( getattr(self, "correct_answer", None) or getattr(self, "rubrics", None) or "No answer or rubrics provided" ) def is_correct(self, user_answer) -> bool: return user_answer == getattr(self, "correct_answer", None) class FreeTextAnswer(Answer): correct_answer = models.CharField(max_length=200, default="") case_sensitive = models.BooleanField(default=False) def is_correct(self, user_answer) -> bool: if not self.case_sensitive: return user_answer.lower() == self.correct_answer.lower() return user_answer == self.correct_answer class LLMGradedAnswer(Answer): def grade(self, user_answer) -> dict: """ Grades the user's answer by calling the grading API. Args: user_answer (str): The answer provided by the user. Returns: dict: The result of the grading. """ try: # use dotenv to load env from dotenv import load_dotenv load_dotenv() prompt = f"Grade the following answer based on the rubric:\nRubric: {self.question.rubrics}\nAnswer: {user_answer}" response = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ], ) return {"result": "success", "message": response.choices[0].message.content} except Exception as e: print(f"An error occurred: {e}") return {"result": "error", "message": str(e)} class MultipleChoiceAnswer(Answer): correct_answer = models.CharField(max_length=200, default="") choices = fields.ArrayField(models.CharField(max_length=200, blank=True)) def __str__(self) -> str: return f"{self.correct_answer} from {self.choices}" class LLMGradedAnswer(Answer): correct_answer = models.CharField(max_length=200, default="") def grade(self, user_answer) -> dict: """ Grades the user's answer by calling the grading API. Args: user_answer (str): The answer provided by the user. Returns: dict: The result of the grading. """ try: # use dotenv to load env from dotenv import load_dotenv load_dotenv() prompt = f"Grade the following answer based on the rubric:\nRubric: {self.question.rubrics}\nAnswer: {user_answer}" response = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ], ) return {"result": "success", "message": response.choices[0].message.content} except Exception as e: print(f"An error occurred: {e}") return {"result": "error", "message": str(e)}