Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,131 +7,63 @@ from spacy.tokens import Span
|
|
7 |
|
8 |
nlp = spacy.load("en_core_web_md")
|
9 |
|
10 |
-
#Text 1
|
11 |
-
def process_text(text1):
|
12 |
-
d = load(text1)
|
13 |
-
return [
|
14 |
-
(for ent in doc1.ents:
|
15 |
-
print(ent.text, ent.label_))
|
16 |
-
(for ent in doc1.ents:
|
17 |
-
print(ent.label_, spacy.explain(ent.label_)))
|
18 |
-
]
|
19 |
-
|
20 |
-
def load(text):
|
21 |
-
user_input = str(text.strip())
|
22 |
-
doc1 = nlp(user_input)
|
23 |
-
|
24 |
-
#Text 2
|
25 |
-
def entities(text2):
|
26 |
-
a = named_ents(text2)
|
27 |
-
return [print("patterns:", patterns)]
|
28 |
-
|
29 |
-
def named_ents(text):
|
30 |
-
pattern_list = []
|
31 |
-
for i in text.strip().split():
|
32 |
-
pattern_list.append(i)
|
33 |
-
|
34 |
-
patterns = list(nlp.pipe(pattern_list))
|
35 |
-
|
36 |
-
#Text 3
|
37 |
-
def run(text3):
|
38 |
-
b = pipe(text3)
|
39 |
-
return [
|
40 |
-
doc
|
41 |
-
print(nlp.pipe_names)]
|
42 |
-
|
43 |
-
def pipe(text):
|
44 |
-
matcher = PhraseMatcher(nlp.vocab)
|
45 |
-
#Create label for pattern
|
46 |
-
user_named = str(text.strip()) #gradio text box here to enter pattern label
|
47 |
-
matcher.add(user_named, patterns)
|
48 |
-
# Define the custom component
|
49 |
-
@Language.component("covid_component")
|
50 |
-
def covid_component_function(doc):
|
51 |
-
# Apply the matcher to the doc
|
52 |
-
matches = matcher(doc)
|
53 |
-
# Create a Span for each match and assign the label "ANIMAL"
|
54 |
-
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
55 |
-
# Overwrite the doc.ents with the matched spans
|
56 |
-
doc.ents = spans
|
57 |
-
return doc
|
58 |
-
# Add the component to the pipeline after the "ner" component
|
59 |
-
nlp.add_pipe((user_named + "component"), after="ner")
|
60 |
-
print(nlp.pipe_names)
|
61 |
-
|
62 |
-
#Text 4
|
63 |
-
|
64 |
-
def test(text4):
|
65 |
-
c = new_sample(text4)
|
66 |
-
return [
|
67 |
-
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
68 |
-
Counter(labels)]
|
69 |
-
|
70 |
|
71 |
-
def new_sample(text):
|
72 |
-
user_doc = str(text).strip())
|
73 |
-
apply_doc = nlp(user_doc)
|
74 |
-
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
75 |
-
#Count total mentions of label COVID in the 3rd document
|
76 |
-
from collections import Counter
|
77 |
-
labels = [ent.label_ for ent in apply_doc.ents]
|
78 |
-
Counter(labels)
|
79 |
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
|
102 |
|
103 |
#Instantiate PhraseMatcher
|
104 |
-
|
105 |
|
106 |
#Create label for pattern
|
107 |
-
|
108 |
-
|
109 |
|
110 |
# Define the custom component
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
# Add the component to the pipeline after the "ner" component
|
122 |
-
|
123 |
-
|
124 |
|
125 |
|
126 |
#Verify that your model now detects all specified mentions of Covid on another text
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
#Count total mentions of label COVID in the 3rd document
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
iface = gr.Interface(
|
137 |
process_text,
|
|
|
7 |
|
8 |
nlp = spacy.load("en_core_web_md")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
+
user_input = input(str(""))
|
14 |
+
doc1 = nlp(user_input)
|
15 |
|
16 |
+
print list of entities captured by pertained model
|
17 |
+
for ent in doc1.ents:
|
18 |
+
print(ent.text, ent.label_)
|
19 |
|
20 |
+
inspect labels and their meaning
|
21 |
+
for ent in doc1.ents:
|
22 |
+
print(ent.label_, spacy.explain(ent.label_))
|
23 |
|
24 |
+
Use PhraseMatcher to find all references of interest
|
25 |
+
Define the different references to Covid
|
26 |
+
user_entries = input(str("")) #gradio text box here to enter sample terms
|
27 |
+
pattern_list = []
|
28 |
|
29 |
+
for i in user_entries.strip().split():
|
30 |
+
pattern_list.append(i)
|
31 |
|
32 |
+
patterns = list(nlp.pipe(pattern_list))
|
33 |
+
print("patterns:", patterns)
|
34 |
|
35 |
#Instantiate PhraseMatcher
|
36 |
+
matcher = PhraseMatcher(nlp.vocab)
|
37 |
|
38 |
#Create label for pattern
|
39 |
+
user_named = input(str("").strip()) #gradio text box here to enter pattern label
|
40 |
+
matcher.add(user_named, patterns)
|
41 |
|
42 |
# Define the custom component
|
43 |
+
@Language.component("covid_component")
|
44 |
+
def covid_component_function(doc):
|
45 |
+
#Apply the matcher to the doc
|
46 |
+
matches = matcher(doc)
|
47 |
+
#Create a Span for each match and assign the label
|
48 |
+
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
49 |
+
# Overwrite the doc.ents with the matched spans
|
50 |
+
doc.ents = spans
|
51 |
+
return doc
|
52 |
|
53 |
# Add the component to the pipeline after the "ner" component
|
54 |
+
nlp.add_pipe((user_named + "component"), after="ner")
|
55 |
+
print(nlp.pipe_names)
|
56 |
|
57 |
|
58 |
#Verify that your model now detects all specified mentions of Covid on another text
|
59 |
+
user_doc = input(str("").strip())
|
60 |
+
apply_doc = nlp(user_doc)
|
61 |
+
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
62 |
|
63 |
#Count total mentions of label COVID in the 3rd document
|
64 |
+
from collections import Counter
|
65 |
+
labels = [ent.label_ for ent in apply_doc.ents]
|
66 |
+
Counter(labels)
|
67 |
|
68 |
iface = gr.Interface(
|
69 |
process_text,
|