tdubon commited on
Commit
4fb44eb
·
1 Parent(s): 1379442

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -104
app.py CHANGED
@@ -7,131 +7,63 @@ from spacy.tokens import Span
7
 
8
  nlp = spacy.load("en_core_web_md")
9
 
10
- #Text 1
11
- def process_text(text1):
12
- d = load(text1)
13
- return [
14
- (for ent in doc1.ents:
15
- print(ent.text, ent.label_))
16
- (for ent in doc1.ents:
17
- print(ent.label_, spacy.explain(ent.label_)))
18
- ]
19
-
20
- def load(text):
21
- user_input = str(text.strip())
22
- doc1 = nlp(user_input)
23
-
24
- #Text 2
25
- def entities(text2):
26
- a = named_ents(text2)
27
- return [print("patterns:", patterns)]
28
-
29
- def named_ents(text):
30
- pattern_list = []
31
- for i in text.strip().split():
32
- pattern_list.append(i)
33
-
34
- patterns = list(nlp.pipe(pattern_list))
35
-
36
- #Text 3
37
- def run(text3):
38
- b = pipe(text3)
39
- return [
40
- doc
41
- print(nlp.pipe_names)]
42
-
43
- def pipe(text):
44
- matcher = PhraseMatcher(nlp.vocab)
45
- #Create label for pattern
46
- user_named = str(text.strip()) #gradio text box here to enter pattern label
47
- matcher.add(user_named, patterns)
48
- # Define the custom component
49
- @Language.component("covid_component")
50
- def covid_component_function(doc):
51
- # Apply the matcher to the doc
52
- matches = matcher(doc)
53
- # Create a Span for each match and assign the label "ANIMAL"
54
- spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
55
- # Overwrite the doc.ents with the matched spans
56
- doc.ents = spans
57
- return doc
58
- # Add the component to the pipeline after the "ner" component
59
- nlp.add_pipe((user_named + "component"), after="ner")
60
- print(nlp.pipe_names)
61
-
62
- #Text 4
63
-
64
- def test(text4):
65
- c = new_sample(text4)
66
- return [
67
- print([(ent.text, ent.label_) for ent in apply_doc.ents])
68
- Counter(labels)]
69
-
70
 
71
- def new_sample(text):
72
- user_doc = str(text).strip())
73
- apply_doc = nlp(user_doc)
74
- print([(ent.text, ent.label_) for ent in apply_doc.ents])
75
- #Count total mentions of label COVID in the 3rd document
76
- from collections import Counter
77
- labels = [ent.label_ for ent in apply_doc.ents]
78
- Counter(labels)
79
 
80
 
81
- #user_input = input(str("")) #gradio text box here to enter sample text
82
- #doc1 = nlp(user_input)
83
 
84
- #print list of entities captured by pertained model
85
- #for ent in doc1.ents:
86
- #print(ent.text, ent.label_)
87
 
88
- #inspect labels and their meaning
89
- #for ent in doc1.ents:
90
- #print(ent.label_, spacy.explain(ent.label_))
91
 
92
- #Use PhraseMatcher to find all references of interest
93
- #Define the different references to Covid
94
- #user_entries = input(str("")) #gradio text box here to enter sample terms
95
- #pattern_list = []
96
 
97
- #for i in user_entries.strip().split():
98
- # pattern_list.append(i)
99
 
100
- #patterns = list(nlp.pipe(pattern_list))
101
- #print("patterns:", patterns)
102
 
103
  #Instantiate PhraseMatcher
104
- #matcher = PhraseMatcher(nlp.vocab)
105
 
106
  #Create label for pattern
107
- #user_named = input(str("").strip()) #gradio text box here to enter pattern label
108
- #matcher.add(user_named, patterns)
109
 
110
  # Define the custom component
111
- #@Language.component("covid_component")
112
- #def covid_component_function(doc):
113
- # Apply the matcher to the doc
114
- # matches = matcher(doc)
115
- # Create a Span for each match and assign the label "ANIMAL"
116
- # spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
117
- # Overwrite the doc.ents with the matched spans
118
- # doc.ents = spans
119
- # return doc
120
 
121
  # Add the component to the pipeline after the "ner" component
122
- #nlp.add_pipe((user_named + "component"), after="ner")
123
- #print(nlp.pipe_names)
124
 
125
 
126
  #Verify that your model now detects all specified mentions of Covid on another text
127
- #user_doc = input(str("").strip())
128
- #apply_doc = nlp(user_doc)
129
- #print([(ent.text, ent.label_) for ent in apply_doc.ents])
130
 
131
  #Count total mentions of label COVID in the 3rd document
132
- #from collections import Counter
133
- #labels = [ent.label_ for ent in apply_doc.ents]
134
- #Counter(labels)
135
 
136
  iface = gr.Interface(
137
  process_text,
 
7
 
8
  nlp = spacy.load("en_core_web_md")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
 
 
 
 
 
 
 
11
 
12
 
13
+ user_input = input(str(""))
14
+ doc1 = nlp(user_input)
15
 
16
+ print list of entities captured by pertained model
17
+ for ent in doc1.ents:
18
+ print(ent.text, ent.label_)
19
 
20
+ inspect labels and their meaning
21
+ for ent in doc1.ents:
22
+ print(ent.label_, spacy.explain(ent.label_))
23
 
24
+ Use PhraseMatcher to find all references of interest
25
+ Define the different references to Covid
26
+ user_entries = input(str("")) #gradio text box here to enter sample terms
27
+ pattern_list = []
28
 
29
+ for i in user_entries.strip().split():
30
+ pattern_list.append(i)
31
 
32
+ patterns = list(nlp.pipe(pattern_list))
33
+ print("patterns:", patterns)
34
 
35
  #Instantiate PhraseMatcher
36
+ matcher = PhraseMatcher(nlp.vocab)
37
 
38
  #Create label for pattern
39
+ user_named = input(str("").strip()) #gradio text box here to enter pattern label
40
+ matcher.add(user_named, patterns)
41
 
42
  # Define the custom component
43
+ @Language.component("covid_component")
44
+ def covid_component_function(doc):
45
+ #Apply the matcher to the doc
46
+ matches = matcher(doc)
47
+ #Create a Span for each match and assign the label
48
+ spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
49
+ # Overwrite the doc.ents with the matched spans
50
+ doc.ents = spans
51
+ return doc
52
 
53
  # Add the component to the pipeline after the "ner" component
54
+ nlp.add_pipe((user_named + "component"), after="ner")
55
+ print(nlp.pipe_names)
56
 
57
 
58
  #Verify that your model now detects all specified mentions of Covid on another text
59
+ user_doc = input(str("").strip())
60
+ apply_doc = nlp(user_doc)
61
+ print([(ent.text, ent.label_) for ent in apply_doc.ents])
62
 
63
  #Count total mentions of label COVID in the 3rd document
64
+ from collections import Counter
65
+ labels = [ent.label_ for ent in apply_doc.ents]
66
+ Counter(labels)
67
 
68
  iface = gr.Interface(
69
  process_text,