File size: 6,064 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# This file is from: https://github.com/ggerganov/llama.cpp 
# And it converts LLaMA model's pytorch_model.bin to ggml compatible file

# Load the model using Torch
# Iterate over all variables and write them to a binary file.
# For each variable, write the following:
#   - Number of dimensions (int)
#   - Name length (int)
#   - Dimensions (int[n_dims])
#   - Name (char[name_length])
#   - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "use-f32" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
import os
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
import argparse

# args
parser = argparse.ArgumentParser()
# The original base model checkpoint dir
parser.add_argument("--dir_model", type=str, default='lora-Vicuna/checkpoint-3000-with-lora/ckpt')
# The finetuned lora model checkpoint dir
parser.add_argument("--dir_out",type=str, default=None)
# NOTE: you can find it in llama-7b dir
parser.add_argument("--fname_tokenizer", type=str, default="lora-Vicuna/llama-7b/tokenizer.model")
# 0=fp32, 1=fp16
parser.add_argument("--ftype", type=int, default=1)
# NOTE: this parameter is n_parts split of the `consolidated.0x` checkpoint
parser.add_argument("--shard", type=int, default=None)
args = parser.parse_args()

if args.dir_out is None: dir_out = args.dir_model # output in the same directory as the model

dir_model = args.dir_model
ftype=args.ftype
fname_tokenizer=args.fname_tokenizer
fname_hparams   = dir_model + "/params.json"

# possible data types
#   ftype == 0 -> float32
#   ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
if ftype < 0 or ftype > 1:
    print("Invalid ftype: " + str(ftype))
    sys.exit(1)

fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin"
if os.path.exists(fname_out):
    print(f"Skip conversion, it already exists: {fname_out}")
    sys.exit(0)

with open(fname_hparams, "r") as f:
    hparams = json.load(f)

tokenizer = SentencePieceProcessor(fname_tokenizer)

hparams.update({"vocab_size": tokenizer.vocab_size()})

def get_n_parts(dim):
    if dim == 4096:
        return 1
    elif dim == 5120:
        return 2
    elif dim == 6656:
        return 4
    elif dim == 8192:
        return 8
    else:
        print("Invalid dim: " + str(dim))
        sys.exit(1)

if args.shard is None: # default
    n_parts = get_n_parts(hparams["dim"])
else:
    n_parts = args.shard

print(hparams)
print('n_parts = ', n_parts)

for p in range(n_parts):
    print('Processing part ', p)

    fname_model = dir_model + "/consolidated.0" + str(p) + ".pth"
    fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin"
    if (p > 0):
        fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)

    model = torch.load(fname_model, map_location="cpu")

    fout = open(fname_out, "wb")

    fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
    fout.write(struct.pack("i", hparams["vocab_size"]))
    fout.write(struct.pack("i", hparams["dim"]))
    fout.write(struct.pack("i", hparams["multiple_of"]))
    fout.write(struct.pack("i", hparams["n_heads"]))
    fout.write(struct.pack("i", hparams["n_layers"]))
    fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
    fout.write(struct.pack("i", ftype))

    # Is this correct??
    for i in range(tokenizer.vocab_size()):
        if tokenizer.is_unknown(i):
            # "<unk>" token (translated as ??)
            text = " \u2047 ".encode("utf-8")
            fout.write(struct.pack("i", len(text)))
            fout.write(text)
        elif tokenizer.is_control(i):
            # "<s>"/"</s>" tokens
            fout.write(struct.pack("i", 0))
        elif tokenizer.is_byte(i):
            # "<U+XX>" tokens (which may be invalid UTF-8)
            piece = tokenizer.id_to_piece(i)
            if len(piece) != 6:
                print("Invalid token: " + piece)
                sys.exit(1)
            byte_value = int(piece[3:-1], 16)
            fout.write(struct.pack("i", 1))
            fout.write(struct.pack("B", byte_value))
        else:
            # normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
            fout.write(struct.pack("i", len(text)))
            fout.write(text)

    for k, v in model.items():
        name = k
        shape = v.shape

        # skip layers.X.attention.inner_attention.rope.freqs
        if name[-5:] == "freqs":
            continue

        print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)

        #data = tf.train.load_variable(dir_model, name).squeeze()
        data = v.numpy().squeeze()
        n_dims = len(data.shape)

        # for efficiency - transpose some matrices
        # "model/h.*/attn/c_attn/w"
        # "model/h.*/attn/c_proj/w"
        # "model/h.*/mlp/c_fc/w"
        # "model/h.*/mlp/c_proj/w"
        #if name[-14:] == "/attn/c_attn/w" or \
        #   name[-14:] == "/attn/c_proj/w" or \
        #   name[-11:] == "/mlp/c_fc/w" or \
        #   name[-13:] == "/mlp/c_proj/w":
        #    print("  Transposing")
        #    data = data.transpose()

        dshape = data.shape

        # default type is fp16
        ftype_cur = 1
        if ftype == 0 or n_dims == 1:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype_cur = 0

        # header
        sname = name.encode('utf-8')
        fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
        for i in range(n_dims):
            fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
        fout.write(sname)

        # data
        data.tofile(fout)

    # I hope this deallocates the memory ..
    model = None

    fout.close()

    print("Done. Output file: " + fname_out + ", (part ", p, ")")
    print("")