File size: 19,229 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import math
import numpy as np
import torch
import torch.nn as nn
from torch.cuda.amp import custom_bwd, custom_fwd

try:
    import triton
    import triton.language as tl
    from . import custom_autotune
    # code based https://github.com/fpgaminer/GPTQ-triton
    @custom_autotune.autotune(
        configs=[
            triton.Config({
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 256,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=4, num_warps=4),
            triton.Config({
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=4, num_warps=4),
            triton.Config({
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=4, num_warps=4),
            triton.Config({
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 32,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=4, num_warps=4),
            triton.Config({
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=4, num_warps=4),
            triton.Config({
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 32,
                'GROUP_SIZE_M': 8
            }, num_stages=2, num_warps=8),
            triton.Config({
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 64,
                'GROUP_SIZE_M': 8
            }, num_stages=3, num_warps=8),
            triton.Config({
                'BLOCK_SIZE_M': 32,
                'BLOCK_SIZE_N': 32,
                'BLOCK_SIZE_K': 128,
                'GROUP_SIZE_M': 8
            }, num_stages=2, num_warps=4),
        ],
        key=['M', 'N', 'K'],
        nearest_power_of_two=True,
        prune_configs_by={
            'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
            'perf_model': None,
            'top_k': None,
        },
    )
    @triton.jit
    def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros,
                          NO_GROUP: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
        """
        Compute the matrix multiplication C = A x B.
        A is of shape (M, K) float16
        B is of shape (K//8, N) int32
        C is of shape (M, N) float16
        scales is of shape (G, N) float16
        zeros is of shape (G, N) float16
        g_ptr is of shape (K) int32 
        """
        infearure_per_bits = 32 // bits

        pid = tl.program_id(axis=0)
        num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
        num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
        num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
        num_pid_in_group = GROUP_SIZE_M * num_pid_n
        group_id = pid // num_pid_in_group
        first_pid_m = group_id * GROUP_SIZE_M
        group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
        pid_m = first_pid_m + (pid % group_size_m)
        pid_n = (pid % num_pid_in_group) // group_size_m

        offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
        offs_k = tl.arange(0, BLOCK_SIZE_K)
        a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)  # (BLOCK_SIZE_M, BLOCK_SIZE_K)
        a_mask = (offs_am[:, None] < M)
        # b_ptrs is set up such that it repeats elements along the K axis 8 times
        b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)  # (BLOCK_SIZE_K, BLOCK_SIZE_N)
        g_ptrs = g_ptr + offs_k
        # shifter is used to extract the N bits of each element in the 32-bit word from B
        scales_ptrs = scales_ptr + offs_bn[None, :]
        zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)

        if NO_GROUP:
            scales = tl.load(scales_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
            zeros = tl.load(zeros_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)

            zeros = (zeros >> zeros_shifter[None, :]) & maxq
            zeros = (zeros + 1)
        
        shifter = (offs_k % infearure_per_bits) * bits
        zeros_shifter = (offs_bn % infearure_per_bits) * bits
        accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)

        for k in range(0, num_pid_k):
            g_idx = tl.load(g_ptrs)

            # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
            if not NO_GROUP: 
                scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
                zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)

                zeros = (zeros >> zeros_shifter[None, :]) & maxq
                zeros = (zeros + 1)

            a = tl.load(a_ptrs, mask=a_mask, other=0.)  # (BLOCK_SIZE_M, BLOCK_SIZE_K)
            b = tl.load(b_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated

            # Now we need to unpack b (which is N-bit values) into 32-bit values
            b = (b >> shifter[:, None]) & maxq  # Extract the N-bit values
            b = (b - zeros) * scales  # Scale and shift

            accumulator += tl.dot(a, b)
            a_ptrs += BLOCK_SIZE_K
            b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
            g_ptrs += BLOCK_SIZE_K

        c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
        c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
        tl.store(c_ptrs, accumulator, mask=c_mask)

    @custom_autotune.autotune(configs=[
        triton.Config({
            'BLOCK_SIZE_M': 64,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 256,
            'GROUP_SIZE_M': 8
        }, num_stages=4, num_warps=4),
        triton.Config({
            'BLOCK_SIZE_M': 128,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 128,
            'GROUP_SIZE_M': 8
        }, num_stages=4, num_warps=4),
        triton.Config({
            'BLOCK_SIZE_M': 64,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 128,
            'GROUP_SIZE_M': 8
        }, num_stages=4, num_warps=4),
        triton.Config({
            'BLOCK_SIZE_M': 128,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 32,
            'GROUP_SIZE_M': 8
        }, num_stages=4, num_warps=4),
        triton.Config({
            'BLOCK_SIZE_M': 64,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 64,
            'GROUP_SIZE_M': 8
        }, num_stages=4, num_warps=4),
        triton.Config({
            'BLOCK_SIZE_M': 64,
            'BLOCK_SIZE_N': 32,
            'BLOCK_SIZE_K': 128,
            'GROUP_SIZE_M': 8
        }, num_stages=2, num_warps=8),
        triton.Config({
            'BLOCK_SIZE_M': 64,
            'BLOCK_SIZE_N': 64,
            'BLOCK_SIZE_K': 64,
            'GROUP_SIZE_M': 8
        }, num_stages=3, num_warps=8),
        triton.Config({
            'BLOCK_SIZE_M': 32,
            'BLOCK_SIZE_N': 128,
            'BLOCK_SIZE_K': 32,
            'GROUP_SIZE_M': 8
        }, num_stages=2, num_warps=4),
    ],
                              key=['M', 'N', 'K'],
                              nearest_power_of_two=True)
    @triton.jit
    def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales,
                                    stride_zeros, NO_GROUP: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
        """
        Compute the matrix multiplication C = A x B.
        A is of shape (M, N) float16
        B is of shape (K//8, N) int32
        C is of shape (M, K) float16
        scales is of shape (G, N) float16
        zeros is of shape (G, N) float16
        g_ptr is of shape (K) int32 
        """
        infearure_per_bits = 32 // bits

        pid = tl.program_id(axis=0)
        num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
        num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
        num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
        num_pid_in_group = GROUP_SIZE_M * num_pid_k
        group_id = pid // num_pid_in_group
        first_pid_m = group_id * GROUP_SIZE_M
        group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
        pid_m = first_pid_m + (pid % group_size_m)
        pid_k = (pid % num_pid_in_group) // group_size_m

        offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
        offs_n = tl.arange(0, BLOCK_SIZE_N)
        a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak)  # (BLOCK_SIZE_M, BLOCK_SIZE_N)
        a_mask = (offs_am[:, None] < M)
        # b_ptrs is set up such that it repeats elements along the K axis 8 times
        b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn)  # (BLOCK_SIZE_K, BLOCK_SIZE_N)
        g_ptrs = g_ptr + offs_bk
        g_idx = tl.load(g_ptrs)

        # shifter is used to extract the N bits of each element in the 32-bit word from B
        scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
        zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros


        if NO_GROUP:
            scales = tl.load(scales_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
            zeros = tl.load(zeros_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)

            zeros = (zeros >> zeros_shifter[None, :]) & maxq
            zeros = (zeros + 1)
        
        shifter = (offs_bk % infearure_per_bits) * bits
        zeros_shifter = (offs_n % infearure_per_bits) * bits
        accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)

        for k in range(0, num_pid_n):
            # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
            if not NO_GROUP:
                scales = tl.load(scales_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
                zeros = tl.load(zeros_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N,)

                zeros = (zeros >> zeros_shifter[None, :]) & maxq
                zeros = (zeros + 1)

            a = tl.load(a_ptrs, mask=a_mask, other=0.)  # (BLOCK_SIZE_M, BLOCK_SIZE_N)
            b = tl.load(b_ptrs)  # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated

            # Now we need to unpack b (which is N-bit values) into 32-bit values
            b = (b >> shifter[:, None]) & maxq  # Extract the N-bit values
            b = (b - zeros) * scales  # Scale and shift
            b = tl.trans(b)

            accumulator += tl.dot(a, b)
            a_ptrs += BLOCK_SIZE_N
            b_ptrs += BLOCK_SIZE_N
            scales_ptrs += BLOCK_SIZE_N
            zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)

        c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
        c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
        tl.store(c_ptrs, accumulator, mask=c_mask)
except:
    print('trioton not installed.')


def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group):
    with torch.cuda.device(input.device):
        output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
        grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), )
        matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
                                qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), no_group)
        return output


def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group):
    with torch.cuda.device(input.device):
        output_dim = (qweight.shape[0] * 32) // bits
        output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
        grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), )
        transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
                                          qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), no_group)
        return output


class QuantLinearFunction(torch.autograd.Function):

    @staticmethod
    @custom_fwd(cast_inputs=torch.float16)
    def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq, no_group):
        output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group)
        ctx.save_for_backward(qweight, scales, qzeros, g_idx)
        ctx.bits, ctx.maxq, ctx.no_group = bits, maxq, no_group
        return output

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output):
        qweight, scales, qzeros, g_idx = ctx.saved_tensors
        bits, maxq, no_group = ctx.bits, ctx.maxq, ctx.no_group
        grad_input = None

        if ctx.needs_input_grad[0]:
            grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq, no_group)
        return grad_input, None, None, None, None, None, None


class QuantLinear(nn.Module):

    def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
        super().__init__()
        if bits not in [2, 4, 8]:
            raise NotImplementedError("Only 2,4,8 bits are supported.")
        self.infeatures = infeatures
        self.outfeatures = outfeatures
        self.bits = bits
        self.maxq = 2**self.bits - 1
        self.groupsize = groupsize if groupsize != -1 else infeatures
        self.no_group = math.ceil(infeatures / self.groupsize) == 1
        
        self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
        self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
        self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
        self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
        if bias:
            self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
        else:
            self.bias = None

    def pack(self, linear, scales, zeros, g_idx=None):
        self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx

        scales = scales.t().contiguous()
        zeros = zeros.t().contiguous()
        scale_zeros = zeros * scales
        self.scales = scales.clone().half()
        if linear.bias is not None:
            self.bias = linear.bias.clone().half()

        intweight = []
        for idx in range(self.infeatures):
            intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.t().contiguous()
        intweight = intweight.numpy().astype(np.uint32)
        qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
        i = 0
        row = 0
        while row < qweight.shape[0]:
            if self.bits in [2, 4, 8]:
                for j in range(i, i + (32 // self.bits)):
                    qweight[row] |= intweight[j] << (self.bits * (j - i))
                i += 32 // self.bits
                row += 1
            else:
                raise NotImplementedError("Only 2,4,8 bits are supported.")

        qweight = qweight.astype(np.int32)
        self.qweight = torch.from_numpy(qweight)

        zeros -= 1
        zeros = zeros.numpy().astype(np.uint32)
        qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
        i = 0
        col = 0
        while col < qzeros.shape[1]:
            if self.bits in [2, 4, 8]:
                for j in range(i, i + (32 // self.bits)):
                    qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
                i += 32 // self.bits
                col += 1
            else:
                raise NotImplementedError("Only 2,4,8 bits are supported.")

        qzeros = qzeros.astype(np.int32)
        self.qzeros = torch.from_numpy(qzeros)

    def forward(self, x):
        out_shape = x.shape[:-1] + (self.outfeatures, )
        out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, self.no_group)
        out = out + self.bias if self.bias is not None else out
        return out.reshape(out_shape)


def make_quant_linear(module, names, bits, groupsize, name=''):
    if isinstance(module, QuantLinear):
        return
    for attr in dir(module):
        tmp = getattr(module, attr)
        name1 = name + '.' + attr if name != '' else attr
        if name1 in names:
            delattr(module, attr)
            setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
    for name1, child in module.named_children():
        make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)


def autotune_warmup_linear(model, transpose=False):
    """
    Pre-tunes the quantized kernel
    """
    from tqdm import tqdm

    kn_values = {}

    for _, m in model.named_modules():
        if not isinstance(m, QuantLinear):
            continue

        k = m.infeatures
        n = m.outfeatures

        if (k, n) not in kn_values:
            kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq, m.no_group)

    print(f'Found {len(kn_values)} unique KN Linear values.')

    print('Warming up autotune cache ...')
    with torch.no_grad():
        for m in tqdm(range(0, 12)):
            m = 2**m  # [1, 2048]
            for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq, no_group) in kn_values.items():
                a = torch.randn(m, k, dtype=torch.float16, device='cuda')
                matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq, no_group)
                if transpose:
                    a = torch.randn(m, n, dtype=torch.float16, device='cuda')
                    transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq, no_group)
    del kn_values