File size: 8,101 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import sys
import torch
import torch.nn as nn
import transformers
import gradio as gr
import argparse
import warnings
import os
import quant
from gptq import GPTQ
from datautils import get_loaders

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
    if type(module) in layers:
        return {name: module}
    res = {}
    for name1, child in module.named_children():
        res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
    return res

def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True):
    from transformers import LlamaConfig, LlamaForCausalLM
    config = LlamaConfig.from_pretrained(model)

    def noop(*args, **kwargs):
        pass

    torch.nn.init.kaiming_uniform_ = noop
    torch.nn.init.uniform_ = noop
    torch.nn.init.normal_ = noop

    torch.set_default_dtype(torch.half)
    transformers.modeling_utils._init_weights = False
    torch.set_default_dtype(torch.half)
    model = LlamaForCausalLM(config)
    torch.set_default_dtype(torch.float)
    if eval:
        model = model.eval()
    layers = find_layers(model)
    for name in ['lm_head']:
        if name in layers:
            del layers[name]
    quant.make_quant_linear(model, layers, wbits, groupsize)

    del layers

    print('Loading model ...')
    model.load_state_dict(torch.load(checkpoint), strict=False)

    quant.make_quant_attn(model)
    if eval and fused_mlp:
        quant.make_fused_mlp(model)

    if warmup_autotune:
        quant.autotune_warmup_linear(model, transpose=not (eval))
        if eval and fused_mlp:
            quant.autotune_warmup_fused(model)
    model.seqlen = 2048
    print('Done.')

    return model

def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
        
        ### Instruction:
        {instruction}

        ### Input:
        {input}
        
        ### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
        
        ### Instruction:
        {instruction}
        
        ### Response:"""

def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path",type=str,default="decapoda-research/llama-7b-hf",help="llama huggingface model to load")
    parser.add_argument("--quant_path",type=str,default="llama7b-8bit-128g.pt",help="the quantified model path")
    parser.add_argument(
                        "--wbits",
                        type=int,
                        default=4,
                        choices=[2, 3, 4, 8],
                        help="bits to use for quantization; use 8 for evaluating base model.")
    
    parser.add_argument('--text', type=str, default='the mean of life is', help='input text')

    parser.add_argument('--min_length', type=int, default=10, help='The minimum length of the sequence to be generated.')

    parser.add_argument('--max_length', type=int, default=256, help='The maximum length of the sequence to be generated.')

    parser.add_argument('--top_p',
                        type=float,
                        default=0.95,
                        help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.')

    parser.add_argument('--temperature', type=float, default=0.1, help='The value used to module the next token probabilities.')
    parser.add_argument('--repetition_penalty',type=float, default=2.0, help='The parameter for repetition penalty. 1.0 means no penalty(0~10)')
    parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.')
    parser.add_argument('--gradio', action='store_true', help='Whether to use gradio to present results.')
    args = parser.parse_args()

    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    model = load_quant(args.model_path, args.quant_path, args.wbits, args.groupsize)
    model.to(device)
    tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
    model.eval()

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)
    #[Way1]: drectly generate
    if not args.gradio:
        input_ids = tokenizer.encode(args.text, return_tensors="pt").to(device)
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids,
                min_new_tokens=args.min_length,
                max_new_tokens=args.max_length,
                top_p=args.top_p,
                temperature=args.temperature,
                repetition_penalty=args.repetition_penalty,
            )
        print("*"*80)
        print("🦙:", tokenizer.decode([el.item() for el in generated_ids[0]],skip_special_tokens=True))
    #[Way2]: generate through the gradio interface
    else:   
        def evaluate(
            input,
            temperature=0.1,
            top_p=0.75,
            top_k=40,
            num_beams=1,
            max_new_tokens=128,
            repetition_penalty=1.0,
            **kwargs,
        ):
            prompt = generate_prompt(input)
            inputs = tokenizer(prompt, return_tensors="pt")
            input_ids = inputs["input_ids"].to(device)
            generation_config = GenerationConfig(
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                num_beams=num_beams,
                **kwargs,
            )
            with torch.no_grad():
                generation_output = model.generate(
                    input_ids=input_ids,
                    generation_config=generation_config,
                    return_dict_in_generate=True,
                    output_scores=True,
                    max_new_tokens=max_new_tokens,
                    repetition_penalty=float(repetition_penalty),
                )
            s = generation_output.sequences[0]
            output = tokenizer.decode(s,skip_special_tokens=True)
            return output.split("### Response:")[1].strip()


        gr.Interface(
            fn=evaluate,
            inputs=[
                gr.components.Textbox(
                    lines=2, label="Input", placeholder="Tell me about alpacas."
                ),
                gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
                gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
                gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
                gr.components.Slider(minimum=1, maximum=5, step=1, value=1, label="Beams"),
                gr.components.Slider(
                    minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
                ),
                gr.components.Slider(
                    minimum=0.1, maximum=10.0, step=0.1, value=1.0, label="Repetition Penalty"
                ),
            ],
            outputs=[
                gr.inputs.Textbox(
                    lines=5,
                    label="Output",
                )
            ],
            title="Chinese-Vicuna 中文小羊驼",
            description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
        ).launch(share=True)


if __name__ == '__main__':
    main()