Spaces:
Runtime error
Runtime error
File size: 8,101 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import sys
import torch
import torch.nn as nn
import transformers
import gradio as gr
import argparse
import warnings
import os
import quant
from gptq import GPTQ
from datautils import get_loaders
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True):
from transformers import LlamaConfig, LlamaForCausalLM
config = LlamaConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
if eval:
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
quant.make_quant_linear(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
model.load_state_dict(torch.load(checkpoint), strict=False)
quant.make_quant_attn(model)
if eval and fused_mlp:
quant.make_fused_mlp(model)
if warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not (eval))
if eval and fused_mlp:
quant.autotune_warmup_fused(model)
model.seqlen = 2048
print('Done.')
return model
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path",type=str,default="decapoda-research/llama-7b-hf",help="llama huggingface model to load")
parser.add_argument("--quant_path",type=str,default="llama7b-8bit-128g.pt",help="the quantified model path")
parser.add_argument(
"--wbits",
type=int,
default=4,
choices=[2, 3, 4, 8],
help="bits to use for quantization; use 8 for evaluating base model.")
parser.add_argument('--text', type=str, default='the mean of life is', help='input text')
parser.add_argument('--min_length', type=int, default=10, help='The minimum length of the sequence to be generated.')
parser.add_argument('--max_length', type=int, default=256, help='The maximum length of the sequence to be generated.')
parser.add_argument('--top_p',
type=float,
default=0.95,
help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.')
parser.add_argument('--temperature', type=float, default=0.1, help='The value used to module the next token probabilities.')
parser.add_argument('--repetition_penalty',type=float, default=2.0, help='The parameter for repetition penalty. 1.0 means no penalty(0~10)')
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.')
parser.add_argument('--gradio', action='store_true', help='Whether to use gradio to present results.')
args = parser.parse_args()
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model = load_quant(args.model_path, args.quant_path, args.wbits, args.groupsize)
model.to(device)
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
#[Way1]: drectly generate
if not args.gradio:
input_ids = tokenizer.encode(args.text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(
input_ids,
min_new_tokens=args.min_length,
max_new_tokens=args.max_length,
top_p=args.top_p,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
)
print("*"*80)
print("🦙:", tokenizer.decode([el.item() for el in generated_ids[0]],skip_special_tokens=True))
#[Way2]: generate through the gradio interface
else:
def evaluate(
input,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1,
max_new_tokens=128,
repetition_penalty=1.0,
**kwargs,
):
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s,skip_special_tokens=True)
return output.split("### Response:")[1].strip()
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Input", placeholder="Tell me about alpacas."
),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=5, step=1, value=1, label="Beams"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
),
gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=1.0, label="Repetition Penalty"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="Chinese-Vicuna 中文小羊驼",
description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
).launch(share=True)
if __name__ == '__main__':
main()
|