File size: 11,351 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# flake8: noqa
import copy
import json
import random
from pathlib import Path
from pprint import pprint

from tqdm import tqdm
from transformers import AutoTokenizer


def init_random_input(len_range: int = 5, value_gen=5) -> list:
    len_gen = random.randint(2, len_range + 1)
    value_range = list(range(-value_gen, value_gen + 1))
    output = []
    for index in range(len_gen):
        value_gen = random.choice(value_range)
        output.append(value_gen)
    return output


const_integer = [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5]


# Functions in the DSL
# Each function defines a transformation in the given DSL Grammar.
def take(input_list: list, n: int) -> list:
    return input_list[:n]


def drop(input_list: list, n: int) -> list:
    return input_list[n:]


def minimum(input_list: list) -> int:
    return min(input_list)


def maximum(input_list: list) -> int:
    return max(input_list)


def reverse(input_list: list) -> list:
    return input_list[::-1]


def sort_asc(input_list: list) -> list:
    return sorted(input_list)


def sort_des(input_list: list) -> list:
    return sorted(input_list, reverse=True)


def add_n(input_list: list, n: int) -> list:
    return [x + n for x in input_list]


def sub_n(input_list: list, n: int) -> list:
    return [x - n for x in input_list]


def mul_n(input_list: list, n: int) -> list:
    return [x * n for x in input_list]


def div_n(input_list: list, n: int) -> list:
    return [x / n for x in input_list]


def expand_copy(input_list: list) -> list:
    return input_list + input_list


# Main Production Rules for the Toy DSL.
list_manip_dsl = {
    "take": take,
    "drop": drop,
    "reverse": reverse,
    "sort_asc": sort_asc,
    "sort_des": sort_des,
    "add_n": add_n,
    "sub_n": sub_n,
    "mul_n": mul_n,
    "expand_copy": expand_copy,
}


# Use this class to execute programs written in the DSL.
class Interpreter:
    def __init__(self) -> None:
        self.parser = list_manip_dsl

    def __call__(self, statement_string: str):
        """
        Evaluation Function for the interpreter.
        args:
            statement_string (str) : Statement String
        """
        try:
            return eval(statement_string)  # Adding an exception to unparsable strings
        except:
            return "ERROR"


interpreter = Interpreter()

# TEMPLATE
# This is used to store the input, output and the function template.
# Input : List given as an input to the function.
# function_template : The atomic function in a given DSL Grammar
# Output : Transformed outut by applying function on the input.
generation_template = {"function_template": "NONE", "output": "NONE", "input": []}


# Each of the generate function is used to generate a
# template for a given function
# if chosen while sampling the dataset.
# each function takes in expressions based on the grammar and generates a template.
# Example: gen_take() generates a template for the take function.
# take function has two arguments,
# list_expression and a bounded integer(Should not be more
# than the length of the list)..


def gen_take(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(range(1, len(expr1) - 1))

    formatted_fn = f"take({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_drop(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(range(1, len(expr1) - 1))

    formatted_fn = f"drop({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_minimum(expr1=None):
    if expr1 == None:
        expr1 = init_random_input()

    formatted_fn = f"minimum({expr1})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1]
    return template


def gen_maximum(expr1=None):
    if expr1 == None:
        expr1 = init_random_input()

    formatted_fn = f"maximum({expr1})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1]
    return template


def gen_reverse(expr1=None):
    if expr1 == None:
        expr1 = init_random_input()

    formatted_fn = f"reverse({expr1})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1]
    return template


def gen_sort_asc(expr1=None):
    if expr1 == None:
        expr1 = init_random_input()

    formatted_fn = f"sort_asc({expr1})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1]
    return template


def gen_sort_des(expr1=None):
    if expr1 == None:
        expr1 = init_random_input()

    formatted_fn = f"sort_des({expr1})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1]
    return template


def gen_add_n(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(const_integer)

    formatted_fn = f"add_n({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_sub_n(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(const_integer)

    formatted_fn = f"sub_n({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_mul_n(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(const_integer)

    formatted_fn = f"mul_n({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_div_n(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(const_integer)

    formatted_fn = f"div_n({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


def gen_expand_copy(expr1=None, expr2=None):
    if expr1 == None:
        expr1 = init_random_input()
    if expr2 == None:
        expr2 = random.choice(range(1, 3))

    formatted_fn = f"expand_copy({expr1},{expr2})"
    template = copy.copy(generation_template)
    template["function_template"] = formatted_fn
    template["output"] = interpreter(formatted_fn)
    template["input"] = [expr1, expr2]
    return template


list_manip_dsl_gen = {
    "take": gen_take,
    "drop": gen_drop,
    "minimum": gen_minimum,
    "maximum": gen_maximum,
    "reverse": gen_reverse,
    "sort_asc": gen_sort_asc,
    "sort_des": gen_sort_des,
    "add_n": gen_add_n,
    "sub_n": gen_sub_n,
    "mul_n": gen_mul_n,
    "div_n": gen_div_n,
    "expand_copy": gen_expand_copy,
}


class Sampler:
    def __init__(
        self,
        max_sample_length: int = 5,
        code_sep: str = ";",
        interpreter_sep: str = "->",
    ):
        self.max_sample_length = max_sample_length
        self.parser = Interpreter()
        self.production_list = list_manip_dsl
        self.production_idt = [i for i in self.production_list.keys()]
        self.production_gen_list = list_manip_dsl_gen
        self.code_sep = code_sep
        self.interpreter_sep = interpreter_sep

    def sample_production(self, gen_length: int = 5):
        init_flag = True
        hash_functions = []
        if gen_length == None:
            gen_length = self.max_sample_length

        for ind in range(gen_length):
            if init_flag:
                random_chosen_function = random.choice(self.production_idt)
                generated_function = self.production_gen_list[random_chosen_function]()
                hash_functions.append(generated_function)
                init_flag = False
            else:
                random_chosen_function = random.choice(self.production_idt)
                generated_function = self.production_gen_list[random_chosen_function](
                    hash_functions[-1]["function_template"]
                )
                if generated_function["output"] == "ERROR":
                    break
                hash_functions.append(generated_function)

        return hash_functions


def create_synthetic_dataset(size: int, io_size=3) -> dict:
    output_list = []
    sampler = Sampler()
    for i in tqdm(range(size)):
        try:
            sampled = sampler.sample_production()
            inp = sampled[0]["input"][0]
            out = sampled[-1]["output"]
            function = sampled[-1]["function_template"]
            prompt_inp = f"Input: {inp} Output: {out} Function:"
            prompt_out = function
            if out != [] and out != "ERROR":
                output_list.append(
                    {
                        "input": prompt_inp,
                        "output": prompt_out,
                        "io_inp": inp,
                        "io_out": out,
                    }
                )
        except:
            pass

    return output_list


def write_to_json(data: dict, file_name: str):
    with open(file_name, "w") as f:
        json.dump(data, f, indent=2)


def basic_stats(dataset, tokenizer):
    """
    Basic stats to calculate the token length of the dataset.
    """
    length_list = []
    for examples in tqdm(dataset):
        datapoint = tokenizer(examples["input"] + " " + examples["output"] + "<|endoftext|>")
        length_list.append(len(datapoint["input_ids"]))
    return {
        "max": max(length_list),
        "min": min(length_list),
        "mean": sum(length_list) / len(length_list),
    }


if __name__ == "__main__":
    # sampler = Sampler()
    # pprint(sampler.sample_production())
    # pprint(interpreter("div_n(reverse([-2, -5, -4]),1)"))
    train_data = create_synthetic_dataset(2000000)
    test_data = create_synthetic_dataset(2_000)
    print(f"Train data size: {len(train_data)}")
    print(f"Test data size: {len(test_data)}")
    Path("dataset").mkdir(parents=True, exist_ok=True)
    write_to_json(train_data, "dataset/train.json")
    write_to_json(test_data, "dataset/test.json")