Spaces:
Runtime error
Runtime error
File size: 11,351 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# flake8: noqa
import copy
import json
import random
from pathlib import Path
from pprint import pprint
from tqdm import tqdm
from transformers import AutoTokenizer
def init_random_input(len_range: int = 5, value_gen=5) -> list:
len_gen = random.randint(2, len_range + 1)
value_range = list(range(-value_gen, value_gen + 1))
output = []
for index in range(len_gen):
value_gen = random.choice(value_range)
output.append(value_gen)
return output
const_integer = [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5]
# Functions in the DSL
# Each function defines a transformation in the given DSL Grammar.
def take(input_list: list, n: int) -> list:
return input_list[:n]
def drop(input_list: list, n: int) -> list:
return input_list[n:]
def minimum(input_list: list) -> int:
return min(input_list)
def maximum(input_list: list) -> int:
return max(input_list)
def reverse(input_list: list) -> list:
return input_list[::-1]
def sort_asc(input_list: list) -> list:
return sorted(input_list)
def sort_des(input_list: list) -> list:
return sorted(input_list, reverse=True)
def add_n(input_list: list, n: int) -> list:
return [x + n for x in input_list]
def sub_n(input_list: list, n: int) -> list:
return [x - n for x in input_list]
def mul_n(input_list: list, n: int) -> list:
return [x * n for x in input_list]
def div_n(input_list: list, n: int) -> list:
return [x / n for x in input_list]
def expand_copy(input_list: list) -> list:
return input_list + input_list
# Main Production Rules for the Toy DSL.
list_manip_dsl = {
"take": take,
"drop": drop,
"reverse": reverse,
"sort_asc": sort_asc,
"sort_des": sort_des,
"add_n": add_n,
"sub_n": sub_n,
"mul_n": mul_n,
"expand_copy": expand_copy,
}
# Use this class to execute programs written in the DSL.
class Interpreter:
def __init__(self) -> None:
self.parser = list_manip_dsl
def __call__(self, statement_string: str):
"""
Evaluation Function for the interpreter.
args:
statement_string (str) : Statement String
"""
try:
return eval(statement_string) # Adding an exception to unparsable strings
except:
return "ERROR"
interpreter = Interpreter()
# TEMPLATE
# This is used to store the input, output and the function template.
# Input : List given as an input to the function.
# function_template : The atomic function in a given DSL Grammar
# Output : Transformed outut by applying function on the input.
generation_template = {"function_template": "NONE", "output": "NONE", "input": []}
# Each of the generate function is used to generate a
# template for a given function
# if chosen while sampling the dataset.
# each function takes in expressions based on the grammar and generates a template.
# Example: gen_take() generates a template for the take function.
# take function has two arguments,
# list_expression and a bounded integer(Should not be more
# than the length of the list)..
def gen_take(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(range(1, len(expr1) - 1))
formatted_fn = f"take({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_drop(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(range(1, len(expr1) - 1))
formatted_fn = f"drop({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_minimum(expr1=None):
if expr1 == None:
expr1 = init_random_input()
formatted_fn = f"minimum({expr1})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1]
return template
def gen_maximum(expr1=None):
if expr1 == None:
expr1 = init_random_input()
formatted_fn = f"maximum({expr1})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1]
return template
def gen_reverse(expr1=None):
if expr1 == None:
expr1 = init_random_input()
formatted_fn = f"reverse({expr1})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1]
return template
def gen_sort_asc(expr1=None):
if expr1 == None:
expr1 = init_random_input()
formatted_fn = f"sort_asc({expr1})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1]
return template
def gen_sort_des(expr1=None):
if expr1 == None:
expr1 = init_random_input()
formatted_fn = f"sort_des({expr1})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1]
return template
def gen_add_n(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(const_integer)
formatted_fn = f"add_n({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_sub_n(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(const_integer)
formatted_fn = f"sub_n({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_mul_n(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(const_integer)
formatted_fn = f"mul_n({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_div_n(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(const_integer)
formatted_fn = f"div_n({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
def gen_expand_copy(expr1=None, expr2=None):
if expr1 == None:
expr1 = init_random_input()
if expr2 == None:
expr2 = random.choice(range(1, 3))
formatted_fn = f"expand_copy({expr1},{expr2})"
template = copy.copy(generation_template)
template["function_template"] = formatted_fn
template["output"] = interpreter(formatted_fn)
template["input"] = [expr1, expr2]
return template
list_manip_dsl_gen = {
"take": gen_take,
"drop": gen_drop,
"minimum": gen_minimum,
"maximum": gen_maximum,
"reverse": gen_reverse,
"sort_asc": gen_sort_asc,
"sort_des": gen_sort_des,
"add_n": gen_add_n,
"sub_n": gen_sub_n,
"mul_n": gen_mul_n,
"div_n": gen_div_n,
"expand_copy": gen_expand_copy,
}
class Sampler:
def __init__(
self,
max_sample_length: int = 5,
code_sep: str = ";",
interpreter_sep: str = "->",
):
self.max_sample_length = max_sample_length
self.parser = Interpreter()
self.production_list = list_manip_dsl
self.production_idt = [i for i in self.production_list.keys()]
self.production_gen_list = list_manip_dsl_gen
self.code_sep = code_sep
self.interpreter_sep = interpreter_sep
def sample_production(self, gen_length: int = 5):
init_flag = True
hash_functions = []
if gen_length == None:
gen_length = self.max_sample_length
for ind in range(gen_length):
if init_flag:
random_chosen_function = random.choice(self.production_idt)
generated_function = self.production_gen_list[random_chosen_function]()
hash_functions.append(generated_function)
init_flag = False
else:
random_chosen_function = random.choice(self.production_idt)
generated_function = self.production_gen_list[random_chosen_function](
hash_functions[-1]["function_template"]
)
if generated_function["output"] == "ERROR":
break
hash_functions.append(generated_function)
return hash_functions
def create_synthetic_dataset(size: int, io_size=3) -> dict:
output_list = []
sampler = Sampler()
for i in tqdm(range(size)):
try:
sampled = sampler.sample_production()
inp = sampled[0]["input"][0]
out = sampled[-1]["output"]
function = sampled[-1]["function_template"]
prompt_inp = f"Input: {inp} Output: {out} Function:"
prompt_out = function
if out != [] and out != "ERROR":
output_list.append(
{
"input": prompt_inp,
"output": prompt_out,
"io_inp": inp,
"io_out": out,
}
)
except:
pass
return output_list
def write_to_json(data: dict, file_name: str):
with open(file_name, "w") as f:
json.dump(data, f, indent=2)
def basic_stats(dataset, tokenizer):
"""
Basic stats to calculate the token length of the dataset.
"""
length_list = []
for examples in tqdm(dataset):
datapoint = tokenizer(examples["input"] + " " + examples["output"] + "<|endoftext|>")
length_list.append(len(datapoint["input_ids"]))
return {
"max": max(length_list),
"min": min(length_list),
"mean": sum(length_list) / len(length_list),
}
if __name__ == "__main__":
# sampler = Sampler()
# pprint(sampler.sample_production())
# pprint(interpreter("div_n(reverse([-2, -5, -4]),1)"))
train_data = create_synthetic_dataset(2000000)
test_data = create_synthetic_dataset(2_000)
print(f"Train data size: {len(train_data)}")
print(f"Test data size: {len(test_data)}")
Path("dataset").mkdir(parents=True, exist_ok=True)
write_to_json(train_data, "dataset/train.json")
write_to_json(test_data, "dataset/test.json")
|