File size: 6,888 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import json
import os
import sys
from math import floor
from typing import List

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

import trlx
from trlx.data.default_configs import (
    TRLConfig,
    default_nemo_1_3b_config,
    default_ppo_config,
)


def get_positive_score(scores):
    "Extract value associated with a positive sentiment from pipeline's output"
    return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]


def main(hparams={}):
    # Merge sweep config with default config if given
    default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams)

    cfg_name = os.environ.get("NEMO_CONFIG", "1.3B")
    if cfg_name == "1.3B":
        nemo_config = default_nemo_1_3b_config()
        batch_size = 16
        chunk_size = 128
        mini_batch_size = 16
        unfrozen_layers = -1

    elif cfg_name == "6.7B":
        nemo_config = default_nemo_1_3b_config()
        nemo_config.name = "megatron_gpt_6.7b"
        nemo_config.model.num_layers = 32
        nemo_config.model.hidden_size = 4096
        nemo_config.model.ffn_hidden_size = 16384
        nemo_config.model.num_attention_heads = 32
        batch_size = 4
        mini_batch_size = 4
        chunk_size = 16
        unfrozen_layers = -1

    elif cfg_name == "13B":
        nemo_config = default_nemo_1_3b_config()
        nemo_config.name = "megatron_gpt_13b"
        nemo_config.model.num_layers = 40
        nemo_config.model.hidden_size = 5120
        nemo_config.model.ffn_hidden_size = 20480
        nemo_config.model.num_attention_heads = 40
        nemo_config.model.tensor_model_parallel_size = 2
        batch_size = 16
        mini_batch_size = 4
        chunk_size = 16
        unfrozen_layers = -1

    elif cfg_name == "20B":
        nemo_config = default_nemo_1_3b_config()
        nemo_config.name = "megatron_gpt_20b"
        nemo_config.model.num_layers = 44
        nemo_config.model.hidden_size = 6144
        nemo_config.model.ffn_hidden_size = 24576
        nemo_config.model.num_attention_heads = 64

        nemo_config.model.tensor_model_parallel_size = 4
        batch_size = 16
        mini_batch_size = 2
        chunk_size = 16
        unfrozen_layers = -1

    elif cfg_name == "33B":
        nemo_config = default_nemo_1_3b_config()
        nemo_config.name = "megatron_gpt_33b"
        nemo_config.model.num_layers = 48
        nemo_config.model.hidden_size = 7168
        nemo_config.model.ffn_hidden_size = 28672
        nemo_config.model.num_attention_heads = 56

        nemo_config.trainer.num_nodes = 4
        nemo_config.trainer.devices = 8
        nemo_config.model.tensor_model_parallel_size = 8
        batch_size = 32
        mini_batch_size = 4
        chunk_size = 32
        unfrozen_layers = -1

    elif cfg_name == "66B":
        nemo_config = default_nemo_1_3b_config()
        nemo_config.trainer.num_nodes = 4
        nemo_config.trainer.devices = 8
        nemo_config.name = "megatron_gpt_66b"
        nemo_config.model.num_layers = 64
        nemo_config.model.hidden_size = 9216
        nemo_config.model.ffn_hidden_size = 36864
        nemo_config.model.num_attention_heads = 72

        nemo_config.model.tensor_model_parallel_size = 8
        batch_size = 32
        mini_batch_size = 2
        chunk_size = 32
        unfrozen_layers = 32

    else:
        raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}")

    config = default_config.evolve(
        train=dict(
            # set automatically
            total_steps=None,
            seq_length=512,
            batch_size=batch_size,
            minibatch_size=mini_batch_size,
            epochs=int(1e6),
            eval_interval=1e6,
            trainer="NeMoPPOTrainer",
            trainer_kwargs=dict(
                pretrained_model=None,  # f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/",
                megatron_cfg=nemo_config,
            ),
            checkpoint_interval=1e6,
            checkpoint_dir=f"nemo_{cfg_name}_ppo_ds_chat_benchmark",
            seed=2023,
            project_name="trlxnemo",
            tags=["nemo", "ppo", "benchmark", cfg_name],
        ),
        optimizer=dict(
            name="distributed_fused_adam",
            kwargs=dict(
                lr=6.001e-5,
                weight_decay=1e-06,
                eps=1.0e-8,
                betas=(0.9, 0.95),
            ),
        ),
        scheduler=dict(
            name="CosineAnnealing",
        ),
        model=dict(num_layers_unfrozen=unfrozen_layers),
        method=dict(
            num_rollouts=chunk_size,
            init_kl_coef=0.05,
            scale_reward="ref",
            vf_coef=1,
            gen_kwargs=dict(temperature=1.0, max_new_tokens=256, min_new_tokens=256),
            chunk_size=chunk_size,
            ppo_epochs=1,
        ),
    )
    config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5)

    rank = int(os.environ["SLURM_PROCID"])
    local_rank = rank % 8

    reward_model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
    reward_tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
    reward_model.eval()
    reward_model.to("cpu")

    def reward_fn(samples: List[str], **kwargs) -> List[float]:
        reward_model.to(local_rank)
        mbs = max(1, config.method.chunk_size // 2)
        for i in range(0, len(samples) // mbs):
            inputs = reward_tokenizer(samples[i * mbs : (i + 1) * mbs], return_tensors="pt", padding=True)
            inputs = inputs.to(local_rank)
            with torch.no_grad():
                outputs = reward_model(**inputs)
            outputs.logits.cpu()
        reward_model.to("cpu")
        return [0.5 for _ in samples]

    # Take few words off of movies reviews as prompts
    dataset = load_dataset("Dahoas/rm-static", "train")
    dataset = dataset.shuffle(seed=2023)

    # select first 40% of the dataset
    dataset = dataset["train"].select(range(floor(len(dataset["train"]) * 0.4)))

    world_size = nemo_config.trainer.num_nodes * nemo_config.trainer.devices
    dp_world_size = world_size // (
        nemo_config.model.tensor_model_parallel_size * nemo_config.model.pipeline_model_parallel_size
    )
    global_batch_size = config.train.batch_size * dp_world_size
    config.train.total_steps = len(dataset) // global_batch_size

    print(f"Total steps: {config.train.total_steps=} {len(dataset)=} {global_batch_size=}")
    trlx.train(
        reward_fn=reward_fn,
        prompts=dataset["prompt"],
        eval_prompts=["I don't know much about Hungarian underground"] * 256,
        config=config,
    )


if __name__ == "__main__":
    hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
    main(hparams)