File size: 4,324 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os

import torch
from datasets import load_dataset
from reward_model.reward_model import GPTRewardModel
from transformers import AutoTokenizer

import trlx
from trlx.data.default_configs import (
    ILQLConfig,
    ModelConfig,
    OptimizerConfig,
    SchedulerConfig,
    TokenizerConfig,
    TrainConfig,
    TRLConfig,
)

default_config = TRLConfig(
    train=TrainConfig(
        seq_length=550,
        batch_size=8,
        epochs=100,
        total_steps=5000,
        checkpoint_interval=10000,
        eval_interval=1000,
        pipeline="PromptPipeline",
        trainer="AccelerateILQLTrainer",
        checkpoint_dir="ilql_summarize_t5",
    ),
    model=ModelConfig(model_path="pvduy/flant5-xl_openai_tldr_sft", num_layers_unfrozen=-1, model_arch_type="seq2seq"),
    tokenizer=TokenizerConfig(tokenizer_path="pvduy/flant5-xl_openai_tldr_sft", truncation_side="left"),
    optimizer=OptimizerConfig(name="adamw", kwargs=dict(lr=1e-6, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6)),
    scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=5000, eta_min=1e-6)),
    method=ILQLConfig(
        name="ilqlconfig",
        tau=0.6,
        gamma=0.99,
        cql_scale=0.1,
        awac_scale=1,
        alpha=0.0001,
        beta=0,
        steps_for_target_q_sync=1,
        two_qs=True,
        gen_kwargs=dict(max_new_tokens=50, top_k=50, beta=[1, 2, 3], temperature=1.0),
    ),
)

REWARD_CHECKPOINT_PATH = "reward_model/rm_checkpoint/pytorch_model.bin"
if not os.path.exists(REWARD_CHECKPOINT_PATH):
    os.makedirs("reward_model/rm_checkpoint", exist_ok=True)
    os.system(
        f"wget -O {REWARD_CHECKPOINT_PATH} \
        https://huggingface.co/CarperAI/openai_summarize_tldr_rm_checkpoint/resolve/main/pytorch_model.bin"
    )
SFT_MODEL_PATH = "CarperAI/openai_summarize_tldr_sft"


def main(hparams={}):
    config = TRLConfig.update(default_config, hparams)

    rw_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
    rw_tokenizer.pad_token = rw_tokenizer.eos_token
    rw_model = GPTRewardModel(SFT_MODEL_PATH)
    rw_model.load_state_dict(torch.load(REWARD_CHECKPOINT_PATH))
    rw_model.half()
    rw_model.eval()
    rw_device = torch.device("cuda:{}".format(1))  # set reward model device
    rw_model.to(rw_device)

    def reward_fn(samples):
        scores_list = []
        batch_size = 2
        for i in range(0, len(samples), batch_size):
            sub_samples = samples[i : i + batch_size]
            sub_samples = ["<|startoftext|>" + chosen + "<|endoftext|>" for chosen in sub_samples]
            encodings_dict = rw_tokenizer(
                sub_samples,
                truncation=True,
                max_length=config.train.seq_length,
                padding="max_length",
                return_tensors="pt",
            )
            input_ids = encodings_dict["input_ids"].to(rw_device)
            attn_masks = encodings_dict["attention_mask"].to(rw_device)
            input_ids = input_ids.repeat(2, 1)
            attn_masks = attn_masks.repeat(2, 1)
            with torch.no_grad():
                sub_scores = rw_model(input_ids=input_ids, attention_mask=attn_masks)
            scores_list.append(sub_scores["chosen_end_scores"])
        scores = torch.cat(scores_list, dim=0)
        return scores

    def preprocess(sample):
        sample["prompt_output"] = [
            [sample["prompt"] + " TL;DR:", sample["chosen"][7:]],
            [sample["prompt"] + " TL;DR:", sample["rejected"][7:]],
        ]
        sample["reward"] = [1, -1]
        return sample

    dataset = load_dataset("CarperAI/openai_summarize_comparisons")
    dataset["train"] = dataset["train"]
    dataset = dataset.map(preprocess)

    prompts_outputs = sum(dataset["train"]["prompt_output"], [])
    rewards = sum(dataset["train"]["reward"], [])
    val_dataset = load_dataset("CarperAI/openai_summarize_tldr", split="valid")
    eval_prompts = list(val_dataset["prompt"])[:1000]

    trlx.train(
        dataset=(prompts_outputs, rewards),
        metric_fn=lambda samples, **kwargs: {"rewards": reward_fn(samples)},
        eval_prompts=eval_prompts,
        config=config,
    )


if __name__ == "__main__":
    import json
    import sys

    hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
    main(hparams)