File size: 6,339 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
from typing import List

import torch
from datasets import load_dataset
from reward_model.reward_model import GPTRewardModel
from tqdm import tqdm
from transformers import AutoTokenizer

import trlx
from trlx.data.configs import (
    ModelConfig,
    OptimizerConfig,
    SchedulerConfig,
    TokenizerConfig,
    TrainConfig,
    TRLConfig,
)
from trlx.models.modeling_ppo import PPOConfig

REWARD_CHECKPOINT_PATH = "reward_model/rm_checkpoint/pytorch_model.bin"
if not os.path.exists(REWARD_CHECKPOINT_PATH):
    os.makedirs("reward_model/rm_checkpoint", exist_ok=True)
    os.system(
        f"wget -O {REWARD_CHECKPOINT_PATH} \
        https://huggingface.co/CarperAI/openai_summarize_tldr_rm_checkpoint/resolve/main/pytorch_model.bin"
    )
SFT_MODEL_PATH = "CarperAI/openai_summarize_tldr_sft"

config = TRLConfig(
    train=TrainConfig(
        seq_length=550,
        epochs=50,
        total_steps=100000,
        batch_size=4,
        checkpoint_interval=10000,
        eval_interval=200,
        pipeline="PromptPipeline",
        trainer="AcceleratePPOTrainer",
    ),
    model=ModelConfig(
        model_path="CarperAI/openai_summarize_tldr_sft",
        num_layers_unfrozen=8,
    ),
    tokenizer=TokenizerConfig(
        tokenizer_path="gpt2",
        truncation_side="right",
    ),
    optimizer=OptimizerConfig(
        name="adamw",
        kwargs={
            "lr": 5.0e-6,
            "betas": [0.9, 0.999],
            "eps": 1.0e-8,
            "weight_decay": 0.01,
        },
    ),
    scheduler=SchedulerConfig(
        name="cosine_annealing",
        kwargs={
            "T_max": 100000,
            "eta_min": 5.0e-6,
        },
    ),
    method=PPOConfig(
        name="PPOConfig",
        num_rollouts=128,
        chunk_size=16,
        ppo_epochs=4,
        init_kl_coef=0.1,
        target=6,
        horizon=10000,
        gamma=1,
        lam=0.95,
        cliprange=0.2,
        cliprange_value=0.2,
        vf_coef=0.2,
        scale_reward=None,
        ref_mean=None,
        ref_std=None,
        cliprange_reward=10,
        gen_kwargs={
            "max_new_tokens": 50,
        },
    ),
)


if __name__ == "__main__":
    # Load the pre-trained reward model
    rw_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
    rw_tokenizer.pad_token = rw_tokenizer.eos_token
    rw_model = GPTRewardModel(SFT_MODEL_PATH)
    rw_model.load_state_dict(torch.load(REWARD_CHECKPOINT_PATH), strict=False)
    rw_model.half()
    rw_model.eval()
    rw_device = torch.device("cuda:{}".format(1))  # set reward model device
    rw_model.to(rw_device)

    def get_scores(samples: List[str]):
        scores_list = []
        batch_size = 2
        for i in range(0, len(samples), batch_size):
            sub_samples = samples[i : i + batch_size]
            sub_samples = ["<|startoftext|>" + chosen + "<|endoftext|>" for chosen in sub_samples]
            encodings_dict = rw_tokenizer(
                sub_samples,
                truncation=True,
                max_length=config.train.seq_length,
                padding="max_length",
                return_tensors="pt",
            )
            input_ids = encodings_dict["input_ids"].to(rw_device)
            attn_masks = encodings_dict["attention_mask"].to(rw_device)
            input_ids = input_ids.repeat(2, 1)
            attn_masks = attn_masks.repeat(2, 1)
            with torch.no_grad():
                sub_scores = rw_model(input_ids=input_ids, attention_mask=attn_masks)
            scores_list.append(sub_scores["chosen_end_scores"])
        scores = torch.cat(scores_list, dim=0)
        return scores

    def get_prompt_dataset(prompts, max_length):
        """
        Get the prompt after T5 decoding to make sure dictionary
        of prompts and summaries is consistent decode prompt from trlX pipeline
        """
        formatted_prompts = []
        for i in tqdm(range(len(prompts))):
            tmp = tokenizer.decode(
                tokenizer(
                    prompts[i].split("TL;DR:")[0],
                    truncation=True,
                    max_length=max_length - 5,  # to make sure "TL;DR" dont get truncated
                    add_special_tokens=False,
                )["input_ids"],
                skip_special_tokens=True,
            ).strip()
            tmp = tmp + "\nTL;DR:"
            tmp = tokenizer.decode(
                tokenizer(tmp, truncation=True, max_length=max_length, add_special_tokens=False)["input_ids"],
                skip_special_tokens=True,
            ).strip()
            formatted_prompts.append(tmp)
        return formatted_prompts

    def reward_fn(samples: List[str], **kwargs):
        original_samples = [text.split("TL;DR:")[0] + "TL;DR: " for text in samples]
        original_samples = [text + post_summary_dict[text.strip()] for text in original_samples]
        original_scores = get_scores(original_samples)
        scores = get_scores(samples)
        norms_scores = scores - original_scores
        return norms_scores

    tokenizer = AutoTokenizer.from_pretrained(config.tokenizer.tokenizer_path)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "left"
    max_length_input = config.train.seq_length - config.method.gen_kwargs["max_new_tokens"]

    dataset = load_dataset("CarperAI/openai_summarize_tldr")

    # Store data into prompt and label pairs
    train_set = [(sample["prompt"], sample["label"]) for sample in dataset["train"]]
    val_set = [(sample["prompt"], sample["label"]) for sample in dataset["valid"]]

    # Split contents into summaries and labels
    train_posts, train_summaries = zip(*train_set)
    val_posts, val_summaries = zip(*val_set)

    # Get the OpenAI summaries
    post_summary_dict = {}
    train_prompts = get_prompt_dataset(train_posts, max_length_input)
    for i in range(len(train_prompts)):
        post_summary_dict[train_prompts[i]] = train_summaries[i]
    val_prompts = get_prompt_dataset(val_posts, max_length_input)
    for i in range(len(val_prompts)):
        post_summary_dict[val_prompts[i]] = val_summaries[i]

    trainer = trlx.train(
        reward_fn=reward_fn,
        prompts=train_prompts,
        eval_prompts=val_prompts[0:1000],  # sampling 1000 validation prompts for evaluation speed in training
        config=config,
    )