teachyourselfcoding's picture
Upload 245 files
fa6856c
raw
history blame
8.24 kB
import json
import math
import os
import sys
from itertools import islice
import numpy as np
import torch
import tritonclient.grpc as client_util
from datasets import load_dataset
from huggingface_hub import snapshot_download
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer
from tritonclient.utils import np_to_triton_dtype
import trlx
from trlx.data.default_configs import (
ModelConfig,
OptimizerConfig,
PPOConfig,
SchedulerConfig,
TokenizerConfig,
TrainConfig,
TRLConfig,
)
default_config = TRLConfig(
train=TrainConfig(
seq_length=1024,
epochs=10000,
total_steps=10000,
batch_size=4,
checkpoint_interval=10000,
eval_interval=500,
pipeline="PromptPipeline",
trainer="AcceleratePPOTrainer",
checkpoint_dir="checkpoints/ppo_hh",
),
model=ModelConfig(model_path="EleutherAI/gpt-j-6B", num_layers_unfrozen=2),
tokenizer=TokenizerConfig(tokenizer_path="EleutherAI/gpt-j-6B", truncation_side="left"),
optimizer=OptimizerConfig(name="adamw", kwargs=dict(lr=8e-6, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6)),
scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=8e-6)),
method=PPOConfig(
name="PPOConfig",
num_rollouts=64,
chunk_size=16,
ppo_epochs=4,
init_kl_coef=0.05,
target=6,
horizon=10000,
gamma=1,
lam=0.95,
cliprange=0.2,
cliprange_value=0.2,
vf_coef=1,
scale_reward="running",
ref_mean=None,
ref_std=None,
cliprange_reward=10,
gen_kwargs=dict(
max_new_tokens=128,
top_k=0,
top_p=1.0,
do_sample=True,
),
),
)
config_name = os.environ.get("CONFIG_NAME")
if config_name == "125M":
default_config.train.batch_size = 32
default_config.train.total_steps = 1500
default_config.train.checkpoint_dir = "checkpoints/ppo_hh_125M"
default_config.model.model_path = "Dahoas/pythia-125M-static-sft"
default_config.tokenizer.tokenizer_path = "EleutherAI/gpt-neox-20b"
default_config.method.num_rollouts = 128
elif config_name == "1B":
default_config.train.batch_size = 8
default_config.train.total_steps = 2500
default_config.optimizer.kwargs["lr"] = 6e-6
default_config.scheduler.kwargs["eta_min"] = 6e-6
default_config.train.checkpoint_dir = "checkpoints/ppo_hh_1B"
default_config.model.model_path = "Dahoas/pythia-1B-static-sft"
default_config.tokenizer.tokenizer_path = "EleutherAI/gpt-neox-20b"
default_config.method.chunk_size = 16
elif config_name == "6B":
default_config.train.batch_size = 4
default_config.train.seq_length = 512
default_config.train.total_steps = 6000
default_config.train.checkpoint_dir = "checkpoints/ppo_hh_6B"
default_config.model.model_path = "Dahoas/pythia-6B-static-sft"
default_config.tokenizer.tokenizer_path = "EleutherAI/gpt-neox-20b"
default_config.method.chunk_size = 16
elif config_name == "20B":
default_config.train.seq_length = 512
default_config.train.batch_size = 1
default_config.train.total_steps = 8000
default_config.optimizer.kwargs["lr"] = 1e-6
default_config.scheduler.kwargs["eta_min"] = 1e-6
default_config.train.checkpoint_dir = "checkpoints/ppo_hh_20B"
default_config.model.model_path = "EleutherAI/gpt-neox-20b"
default_config.tokenizer.tokenizer_path = "EleutherAI/gpt-neox-20b"
default_config.method.num_rollouts = 16
default_config.method.chunk_size = 4
default_config.method.ppo_epochs = 2
def prepare_tensor(name: str, input):
t = client_util.InferInput(name, input.shape, np_to_triton_dtype(input.dtype))
t.set_data_from_numpy(input)
return t
def create_reward_fn(): # noqa: C901
reward_tokenizer = AutoTokenizer.from_pretrained("gpt2")
reward_tokenizer.pad_token = reward_tokenizer.eos_token
reward_tokenizer.truncation_side = "left"
triton_host = os.environ.get("TRITON_HOST")
if triton_host:
triton_url, triton_model = triton_host.split("/")
client = client_util.InferenceServerClient(url=triton_url, verbose=False)
def reward_fn(samples, prompts, outputs):
samples = [s + reward_tokenizer.eos_token for s in samples]
input = reward_tokenizer(samples, padding=True, max_length=1024)
mbs = 24
out = []
for i in range(math.ceil(len(samples) / mbs)):
batch_ixs = slice(i * mbs, (i + 1) * mbs)
input_ids = np.array(input.input_ids[batch_ixs], dtype=np.int32)
result = client.infer(triton_model, [prepare_tensor("input_ids", input_ids)])
rewards = result.as_numpy("rewards")
out.extend(rewards)
return out
elif os.environ.get("RANK", "0") == "0":
class RewardModel(nn.Module):
def __init__(self, checkpoint_path, eos_token_id):
super().__init__()
model = AutoModelForCausalLM.from_pretrained(checkpoint_path)
self.transformer = model.transformer
self.v_head = nn.Linear(model.config.n_embd, 1, bias=False)
self.eos_token_id = eos_token_id
def forward(self, input_ids):
states = self.transformer(input_ids)[0]
rewards = self.v_head(states).squeeze(-1)
ends = torch.argmax((input_ids == self.eos_token_id).float(), dim=1).view(-1, 1)
returns = torch.gather(rewards, 1, ends).squeeze(-1)
return returns
reward_model = RewardModel("EleutherAI/gpt-j-6B", reward_tokenizer.eos_token_id)
directory = snapshot_download("Dahoas/gptj-rm-static", revision="676bfd4d")
for fpath in os.listdir(directory):
if fpath.endswith(".pt") or fpath.endswith(".bin"):
checkpoint = os.path.join(directory, fpath)
break
reward_model.load_state_dict(torch.load(checkpoint))
reward_model.eval()
reward_model.requires_grad_(False)
reward_device = torch.cuda.device_count() - 1
reward_model = reward_model.half().to(reward_device)
reward_batch_size = 48
delta_reward = True
def get_reward(samples):
input = reward_tokenizer(
samples,
padding=True,
truncation=True,
max_length=reward_tokenizer.max_len_single_sentence,
return_tensors="pt",
).to(reward_device)
mbs = reward_batch_size
out = []
for i in range(math.ceil(len(samples) / mbs)):
batch_ixs = slice(i * mbs, (i + 1) * mbs)
input_ids = input.input_ids[batch_ixs]
rewards = reward_model(input_ids)
out.extend(rewards)
return torch.hstack(out)
def reward_fn(samples, prompts, original_output, **kwargs):
samples = [s + reward_tokenizer.eos_token for s in samples]
rewards = get_reward(samples)
if not delta_reward:
return rewards
original_samples = [p + o + reward_tokenizer.eos_token for p, o in zip(prompts, original_output)]
original_rewards = get_reward(original_samples)
return rewards - original_rewards
else:
reward_fn = True
return reward_fn
def main(hparams={}):
config = TRLConfig.update(default_config, hparams)
dataset = load_dataset("Dahoas/rm-static")
prompts = [{"prompt": x["prompt"], "original_output": x["chosen"]} for x in dataset["train"]]
eval_prompts = [{"prompt": x["prompt"], "original_output": x["chosen"]} for x in islice(dataset["test"], 280)]
reward_fn = create_reward_fn()
trlx.train(
prompts=prompts,
eval_prompts=eval_prompts,
reward_fn=reward_fn,
config=config,
stop_sequences=["Human:", "human:", "Assistant:", "assistant:"],
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)