Spaces:
Runtime error
Runtime error
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset | |
# with a sentiment reward function | |
import json | |
import os | |
import sys | |
from typing import List | |
import torch | |
from datasets import load_dataset | |
from transformers import pipeline | |
import trlx | |
from trlx.data.default_configs import ( | |
ModelConfig, | |
OptimizerConfig, | |
PPOConfig, | |
SchedulerConfig, | |
TokenizerConfig, | |
TrainConfig, | |
TRLConfig, | |
) | |
def get_positive_score(scores): | |
"Extract value associated with a positive sentiment from pipeline's output" | |
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
def llama_config(): | |
return TRLConfig( | |
train=TrainConfig( | |
seq_length=1024, | |
epochs=100, | |
total_steps=400, | |
batch_size=32, | |
checkpoint_interval=10000, | |
eval_interval=100, | |
pipeline="PromptPipeline", | |
trainer="AcceleratePPOTrainer", | |
save_best=False, | |
), | |
model=ModelConfig(model_path="NousResearch/Llama-2-7b-hf", num_layers_unfrozen=2), | |
tokenizer=TokenizerConfig(tokenizer_path="NousResearch/Llama-2-7b-hf", truncation_side="right"), | |
optimizer=OptimizerConfig( | |
name="adamw", kwargs=dict(lr=1e-5, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6) | |
), | |
scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=1.0e-5)), | |
method=PPOConfig( | |
name="PPOConfig", | |
num_rollouts=128, | |
chunk_size=128, | |
ppo_epochs=4, | |
init_kl_coef=0.001, | |
target=6, | |
horizon=10000, | |
gamma=1, | |
lam=0.95, | |
cliprange=0.2, | |
cliprange_value=0.2, | |
vf_coef=1, | |
scale_reward="ignored", | |
ref_mean=None, | |
ref_std=None, | |
cliprange_reward=10, | |
gen_kwargs=dict( | |
max_new_tokens=40, | |
top_k=0, | |
top_p=1.0, | |
do_sample=True, | |
), | |
), | |
) | |
def main(hparams={}): | |
# Merge sweep config with default config if given | |
config = TRLConfig.update(llama_config().to_dict(), hparams) | |
if torch.cuda.is_available(): | |
device = int(os.environ.get("LOCAL_RANK", 0)) | |
else: | |
device = -1 | |
sentiment_fn = pipeline( | |
"sentiment-analysis", | |
"lvwerra/distilbert-imdb", | |
top_k=2, | |
truncation=True, | |
batch_size=256, | |
device=device, | |
) | |
def reward_fn(samples: List[str], **kwargs) -> List[float]: | |
sentiments = list(map(get_positive_score, sentiment_fn(samples))) | |
return sentiments | |
# Take few words off of movies reviews as prompts | |
imdb = load_dataset("imdb", split="train+test") | |
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] | |
trlx.train( | |
reward_fn=reward_fn, | |
prompts=prompts, | |
eval_prompts=["I don't know much about Hungarian underground"] * 64, | |
config=config, | |
) | |
if __name__ == "__main__": | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |