chatlawv1 / tools /application /chitchat_finetune.py
teachyourselfcoding's picture
Upload 245 files
fa6856c
import os
import sys
import wandb
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset
import transformers
import argparse
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
)
# Used for chitchat dataset
# 用于闲聊对话数据
parser = argparse.ArgumentParser()
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--data_path", type=str, default="datasets/chitchat-1e5.json") # for example: LCCC
parser.add_argument("--output_path", type=str, default="outs/13B")
parser.add_argument("--model_path", type=str, default="../model/13B_hf")
parser.add_argument("--eval_steps", type=int, default=200)
parser.add_argument("--save_steps", type=int, default=200)
parser.add_argument("--test_size", type=int, default=0)
args = parser.parse_args()
# optimized for RTX 4090. for larger GPUs, increase some of these?
MICRO_BATCH_SIZE = 24 # this could actually be 5 but i like powers of 2
BATCH_SIZE = 128
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 2 # we don't always need 3 tbh
LEARNING_RATE = 3e-4 # the Karpathy constant
CUTOFF_LEN = 341 # max:341
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = args.test_size #2000
TARGET_MODULES = [
"q_proj",
"v_proj",
]
DATA_PATH = args.data_path
OUTPUT_DIR = args.output_path #"lora-Vicuna"
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
if args.wandb:
wandb.login(key = '41327ad68395c1a5e5e3827fa5ee97944740250d') # luzhenyi
wandb.init(
project="LoRA",
name=f"{args.model_path}-{args.data_path}",
config=None,
)
else:
wandb.init(mode='disabled')
tokenizer = LlamaTokenizer.from_pretrained(
args.model_path, add_eos_token=True
)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
data = load_dataset("json", data_files=DATA_PATH)
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
CHAT_DICT = {
'prompt': (
"The following is a conversation between an AI assistant called Bot and a human user called User."
"Bot is is intelligent, knowledgeable, wise and polite.\n\n"
),
'history': (
"User:\n{input}\n\nBot:{output}\n\n"
),
'input': (
"### User:\n{input}\n\n### Bot:"
)
}
def tokenize(prompt):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def generate_and_tokenize_prompt(data_point):
# This function masks out the labels for the input,
# so that our loss is computed only on the response.
user_prompt = CHAT_DICT['prompt']
for history in data_point['history']:
user_prompt+= CHAT_DICT['history'].format_map(history)
user_prompt += CHAT_DICT['input'].format_map(data_point)
len_user_prompt_tokens = (len(tokenizer(
user_prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
)["input_ids"])- 1) # no eos token
full_tokens = tokenizer(
user_prompt + data_point["output"],
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length", # pad到最长
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt,num_proc=12)
val_data = None
model = LlamaForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=True,
device_map=device_map,
)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
num_train_epochs=EPOCHS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None,
save_steps=args.save_steps,
output_dir=OUTPUT_DIR,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.wandb else [],
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(OUTPUT_DIR)
print("\n If there's a warning about missing keys above, please disregard :)")