Spaces:
Runtime error
Runtime error
import os.path | |
import sys | |
from glob import glob | |
from omegaconf.omegaconf import OmegaConf | |
from trlx.data.default_configs import default_ppo_config | |
from trlx.trainer.nemo_ppo_trainer import PPOGPT, megatron_trainer | |
default_config = default_ppo_config() | |
trl_config = default_config.evolve( | |
train=dict( | |
default_config.train.__dict__, | |
trainer="NeMoPPOTrainer", | |
trainer_kwargs=dict( | |
pretrained_model=None, | |
megatron_cfg="megatron_20b.yaml", | |
), | |
), | |
) | |
def find_checkpoints(checkpoint_dir): | |
checkpoints = glob(os.path.join(checkpoint_dir, "*", "*.ckpt")) | |
names = [os.path.basename(c) for c in checkpoints] | |
return set(names) | |
def main(megatron_cfg_path, checkpoint_path): | |
ppo_config = trl_config.method | |
megatron_cfg = OmegaConf.load(megatron_cfg_path) | |
megatron_cfg.trainer.num_nodes = 1 | |
megatron_cfg.trainer.devices = ( | |
megatron_cfg.model.tensor_model_parallel_size * megatron_cfg.model.pipeline_model_parallel_size | |
) | |
# Overriden in generate | |
megatron_cfg.model.global_batch_size = megatron_cfg.model.micro_batch_size | |
megatron_cfg.model.resume_from_checkpoint = checkpoint_path | |
megatron_cfg.exp_manager.create_wandb_logger = False | |
megatron_cfg.exp_manager.create_checkpoint_callback = False | |
trainer = megatron_trainer(megatron_cfg) | |
if trainer.world_size != megatron_cfg.trainer.devices: | |
raise ValueError("Inference only supports data parallel world size of 1") | |
# Initialize PyTorch Lightning DDP | |
def dummy(): | |
return | |
if trainer.strategy.launcher is not None: | |
trainer.strategy.launcher.launch(dummy, trainer=trainer) | |
trainer.strategy.setup_environment() | |
model = PPOGPT(ppo_config=ppo_config, cfg=megatron_cfg.model, trainer=trainer, build_reference_model=False) | |
model.load_from_pretrained(checkpoint_path) | |
test = ["I don't know much about Hungarian underground"] | |
test = [model.tokenizer.tokenizer.bos_token + t for t in test] | |
print(model.generate(test, dict(max_length=40, min_length=0))["sentences"]) | |
if __name__ == "__main__": | |
main(sys.argv[1], sys.argv[2]) | |