chatlawv1 / trlx /examples /nemo_sft_sentiments.py
teachyourselfcoding's picture
Upload 245 files
fa6856c
import os
from typing import Dict, List
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.default_configs import (
TRLConfig,
default_nemo_1_3b_config,
default_nemo_20b_config,
default_sft_config,
)
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def main(hparams={}):
# Merge sweep config with default config if given
default_config = TRLConfig.update(default_sft_config(), hparams)
cfg_name = os.environ.get("NEMO_CONFIG", "1.3B")
if cfg_name == "1.3B":
nemo_config = default_nemo_1_3b_config()
elif cfg_name == "20B":
nemo_config = default_nemo_20b_config()
else:
raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}")
nemo_config.exp_manager.create_wandb_logger = True
nemo_config.exp_manager.wandb_logger_kwargs.name = f"nemo-sft-sentiments-{cfg_name}"
config = default_config.evolve(
train=dict(
trainer="NeMoSFTTrainer",
trainer_kwargs=dict(
pretrained_model=f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/",
megatron_cfg=nemo_config,
),
),
model=dict(num_layers_unfrozen=-1),
tags=["nemo", "sft", "sentiments", cfg_name],
)
imdb = load_dataset("imdb", split="train+test")
# Finetune on only positive reviews
imdb = imdb.filter(lambda sample: sample["label"] == 1)
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=-1,
)
def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]:
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
return {"sentiments": sentiments}
trlx.train(
samples=imdb["text"],
eval_prompts=["I don't know much about Hungarian underground"] * 64,
metric_fn=metric_fn,
config=config,
)
if __name__ == "__main__":
main()