Spaces:
Runtime error
Runtime error
import trlx | |
from examples.randomwalks import generate_random_walks | |
from trlx.data.default_configs import ( | |
ModelConfig, | |
OptimizerConfig, | |
PPOConfig, | |
SchedulerConfig, | |
TokenizerConfig, | |
TrainConfig, | |
TRLConfig, | |
) | |
default_config = TRLConfig( | |
train=TrainConfig( | |
seq_length=10, | |
epochs=20, | |
total_steps=10000, | |
batch_size=100, | |
checkpoint_interval=10000, | |
eval_interval=20, | |
pipeline="PromptPipeline", | |
trainer="AcceleratePPOTrainer", | |
), | |
model=ModelConfig(model_path="CarperAI/randomwalks", num_layers_unfrozen=-1), | |
tokenizer=TokenizerConfig(tokenizer_path="CarperAI/randomwalks", truncation_side="right"), | |
optimizer=OptimizerConfig(name="adamw", kwargs=dict(lr=3.0e-4, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6)), | |
scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=3.0e-4)), | |
method=PPOConfig( | |
name="PPOConfig", | |
num_rollouts=128, | |
chunk_size=128, | |
ppo_epochs=4, | |
init_kl_coef=0, | |
target=None, | |
horizon=10000, | |
gamma=1, | |
lam=0.95, | |
cliprange=0.2, | |
cliprange_value=0.2, | |
vf_coef=1.2, | |
scale_reward="ignored", | |
ref_mean=None, | |
ref_std=None, | |
cliprange_reward=1, | |
gen_kwargs=dict( | |
max_new_tokens=9, | |
top_k=0, | |
top_p=1.0, | |
do_sample=True, | |
), | |
), | |
) | |
def main(hparams={}): | |
config = TRLConfig.update(default_config, hparams) | |
metric_fn, prompts, *_ = generate_random_walks(seed=config.train.seed) | |
trlx.train( | |
# An "optimality" reward function is used, with scores in [0,1] | |
# depending on how close the path is to the shortest possible path. | |
reward_fn=lambda samples, **kwargs: metric_fn(samples)["optimality"], | |
# The prompts are simply the first nodes (represented as letters) to | |
# start from. | |
prompts=prompts, | |
eval_prompts=prompts, | |
metric_fn=lambda samples, **kwargs: metric_fn(samples), | |
config=config, | |
) | |
if __name__ == "__main__": | |
import json | |
import sys | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |