Spaces:
Runtime error
Runtime error
File size: 1,385 Bytes
6ec105b 17a8518 6ec105b bb514b9 202a9f4 6ec105b bb514b9 bad8793 17a8518 bad8793 17a8518 3b5b50d 2bf97c9 f665bf2 0f571f7 bad8793 2bf97c9 332e4a1 0f571f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from os import write
from typing import Sequence
import streamlit as st
from hf_model import classifier_zero,load_model
from utils import plot_result,examples_load
import json
classifier=load_model()
ex_text,ex_labels=examples_load()
if __name__ == '__main__':
st.header("Zero Shot Classification")
st.write("This app allows you to classify any text into any categories you are interested in.")
with st.form(key='my_form'):
text_input = st.text_area("Input any text you want to classify here:",ex_text)
labels = st.text_input('Write any topic keywords you are interested in here (separate different topics with a ","):',ex_labels, max_chars=1000)
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
radio = st.radio("Select Multiclass",('Only one topic can be corect at a time','Multiple topics can be correct at a time'),)
multi_class= True if radio=="Multiple topics can be correct at a time" else False
submit_button = st.form_submit_button(label='Submit')
if submit_button:
if len(labels) == 0:
st.write('Enter some text and at least one possible topic to see predictions.')
top_topics, scores = classifier_zero(classifier,sequence=text_input,labels=labels,multi_class=multi_class)
plot_result(top_topics[::-1][-10:], scores[::-1][-10:])
|