Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
from teapotai import TeapotAI, TeapotAISettings
|
3 |
import hashlib
|
4 |
import os
|
5 |
import requests
|
@@ -19,211 +18,14 @@ from tqdm import tqdm
|
|
19 |
import re
|
20 |
import os
|
21 |
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
Attributes:
|
28 |
-
use_rag (bool): Whether to use RAG (Retrieve and Generate).
|
29 |
-
rag_num_results (int): Number of top documents to retrieve based on similarity.
|
30 |
-
rag_similarity_threshold (float): Similarity threshold for document relevance.
|
31 |
-
verbose (bool): Whether to print verbose updates.
|
32 |
-
log_level (str): The log level for the application (e.g., "info", "debug").
|
33 |
-
"""
|
34 |
-
use_rag: bool = True # Whether to use RAG (Retrieve and Generate)
|
35 |
-
rag_num_results: int = 3 # Number of top documents to retrieve based on similarity
|
36 |
-
rag_similarity_threshold: float = 0.5 # Similarity threshold for document relevance
|
37 |
-
verbose: bool = True # Whether to print verbose updates
|
38 |
-
log_level: str = "info" # Log level setting (e.g., 'info', 'debug')
|
39 |
-
|
40 |
|
41 |
-
class TeapotAI:
|
42 |
-
"""
|
43 |
-
TeapotAI class that interacts with a language model for text generation and retrieval tasks.
|
44 |
|
45 |
-
Attributes:
|
46 |
-
model (str): The model identifier.
|
47 |
-
model_revision (Optional[str]): The revision/version of the model.
|
48 |
-
api_key (Optional[str]): API key for accessing the model (if required).
|
49 |
-
settings (TeapotAISettings): Configuration settings for the AI instance.
|
50 |
-
generator (callable): The pipeline for text generation.
|
51 |
-
embedding_model (callable): The pipeline for feature extraction (document embeddings).
|
52 |
-
documents (List[str]): List of documents for retrieval.
|
53 |
-
document_embeddings (np.ndarray): Embeddings for the provided documents.
|
54 |
-
"""
|
55 |
-
|
56 |
-
def __init__(self, model_revision: Optional[str] = None, api_key: Optional[str] = None,
|
57 |
-
documents: List[str] = [], settings: TeapotAISettings = TeapotAISettings()):
|
58 |
-
"""
|
59 |
-
Initializes the TeapotAI class with optional model_revision and api_key.
|
60 |
-
Parameters:
|
61 |
-
model_revision (Optional[str]): The revision/version of the model to use.
|
62 |
-
api_key (Optional[str]): The API key for accessing the model if needed.
|
63 |
-
documents (List[str]): A list of documents for retrieval. Defaults to an empty list.
|
64 |
-
settings (TeapotAISettings): The settings configuration (defaults to TeapotAISettings()).
|
65 |
-
"""
|
66 |
-
self.model = "teapotai/teapotllm"
|
67 |
-
self.model_revision = model_revision
|
68 |
-
self.api_key = api_key
|
69 |
-
self.settings = settings
|
70 |
-
|
71 |
-
if self.settings.verbose:
|
72 |
-
print(""" _____ _ _ ___ __o__ _;;
|
73 |
-
|_ _|__ __ _ _ __ ___ | |_ / \ |_ _| __ /-___-\__/ /
|
74 |
-
| |/ _ \/ _` | '_ \ / _ \| __| / _ \ | | ( | |__/
|
75 |
-
| | __/ (_| | |_) | (_) | |_ / ___ \ | | \_|~~~~~~~|
|
76 |
-
|_|\___|\__,_| .__/ \___/ \__/ /_/ \_\___| \_____/
|
77 |
-
|_| """)
|
78 |
-
|
79 |
-
if self.settings.verbose:
|
80 |
-
print(f"Loading Model: {self.model} Revision: {self.model_revision or 'Latest'}")
|
81 |
-
|
82 |
-
self.generator = pipeline("text2text-generation", model=self.model, revision=self.model_revision) if model_revision else pipeline("text2text-generation", model=self.model)
|
83 |
-
|
84 |
-
self.documents = documents
|
85 |
-
|
86 |
-
if self.settings.use_rag and self.documents:
|
87 |
-
self.embedding_model = pipeline("feature-extraction", model="teapotai/teapotembedding")
|
88 |
-
self.document_embeddings = self._generate_document_embeddings(self.documents)
|
89 |
-
|
90 |
-
def _generate_document_embeddings(self, documents: List[str]) -> np.ndarray:
|
91 |
-
"""
|
92 |
-
Generate embeddings for the provided documents using the embedding model.
|
93 |
-
Parameters:
|
94 |
-
documents (List[str]): A list of document strings to generate embeddings for.
|
95 |
-
Returns:
|
96 |
-
np.ndarray: A NumPy array of document embeddings.
|
97 |
-
"""
|
98 |
-
embeddings = []
|
99 |
-
|
100 |
-
if self.settings.verbose:
|
101 |
-
print("Generating embeddings for documents...")
|
102 |
-
for doc in tqdm(documents, desc="Document Embedding", unit="doc"):
|
103 |
-
embeddings.append(self.embedding_model(doc)[0][0])
|
104 |
-
else:
|
105 |
-
for doc in documents:
|
106 |
-
embeddings.append(self.embedding_model(doc)[0][0])
|
107 |
-
|
108 |
-
return np.array(embeddings)
|
109 |
-
|
110 |
-
def rag(self, query: str) -> List[str]:
|
111 |
-
"""
|
112 |
-
Perform RAG (Retrieve and Generate) by finding the most relevant documents based on cosine similarity.
|
113 |
-
Parameters:
|
114 |
-
query (str): The query string to find relevant documents for.
|
115 |
-
Returns:
|
116 |
-
List[str]: A list of the top N most relevant documents.
|
117 |
-
"""
|
118 |
-
if not self.settings.use_rag or not self.documents:
|
119 |
-
return []
|
120 |
-
|
121 |
-
query_embedding = self.embedding_model(query)[0][0]
|
122 |
-
similarities = cosine_similarity([query_embedding], self.document_embeddings)[0]
|
123 |
-
|
124 |
-
filtered_indices = [i for i, similarity in enumerate(similarities) if similarity >= self.settings.rag_similarity_threshold]
|
125 |
-
top_n_indices = sorted(filtered_indices, key=lambda i: similarities[i], reverse=True)[:self.settings.rag_num_results]
|
126 |
-
|
127 |
-
return [self.documents[i] for i in top_n_indices]
|
128 |
-
|
129 |
-
def generate(self, input_text: str) -> str:
|
130 |
-
"""
|
131 |
-
Generate text based on the input string using the teapotllm model.
|
132 |
-
Parameters:
|
133 |
-
input_text (str): The text prompt to generate a response for.
|
134 |
-
Returns:
|
135 |
-
str: The generated output from the model.
|
136 |
-
"""
|
137 |
-
|
138 |
-
|
139 |
-
result = self.generator(input_text, max_length=512)[0].get("generated_text")
|
140 |
-
|
141 |
-
|
142 |
-
if self.settings.log_level == "debug":
|
143 |
-
print(input_text)
|
144 |
-
print(result)
|
145 |
-
|
146 |
-
return result
|
147 |
-
|
148 |
-
def query(self, query: str, context: str = "") -> str:
|
149 |
-
"""
|
150 |
-
Handle a query and context, using RAG if no context is provided, and return a generated response.
|
151 |
-
Parameters:
|
152 |
-
query (str): The query string to be answered.
|
153 |
-
context (str): The context to guide the response. Defaults to an empty string.
|
154 |
-
Returns:
|
155 |
-
str: The generated response based on the input query and context.
|
156 |
-
"""
|
157 |
-
if self.settings.use_rag and not context:
|
158 |
-
context = "\n".join(self.rag(query)) # Perform RAG if no context is provided
|
159 |
-
|
160 |
-
input_text = f"Context: {context}\nQuery: {query}"
|
161 |
-
return self.generate(input_text)
|
162 |
-
|
163 |
-
def chat(self, conversation_history: List[dict]) -> str:
|
164 |
-
"""
|
165 |
-
Engage in a chat by taking a list of previous messages and generating a response.
|
166 |
-
Parameters:
|
167 |
-
conversation_history (List[dict]): A list of previous messages, each containing 'content'.
|
168 |
-
Returns:
|
169 |
-
str: The generated response based on the conversation history.
|
170 |
-
"""
|
171 |
-
chat_history = "".join([message['content'] + "\n" for message in conversation_history])
|
172 |
-
|
173 |
-
if self.settings.use_rag:
|
174 |
-
context_documents = self.rag(chat_history) # Perform RAG on the conversation history
|
175 |
-
context = "\n".join(context_documents)
|
176 |
-
chat_history = f"Context: {context}\n" + chat_history
|
177 |
-
|
178 |
-
return self.generate(chat_history + "\n" + "agent:")
|
179 |
|
180 |
-
def extract(self, class_annotation: BaseModel, query: str = "", context: str = "") -> BaseModel:
|
181 |
-
"""
|
182 |
-
Extract fields from a Pydantic class annotation by querying and processing each field.
|
183 |
-
Parameters:
|
184 |
-
class_annotation (BaseModel): The Pydantic class to extract fields from.
|
185 |
-
query (str): The query string to guide the extraction. Defaults to an empty string.
|
186 |
-
context (str): Optional context for the query.
|
187 |
-
Returns:
|
188 |
-
BaseModel: An instance of the provided Pydantic class with extracted field values.
|
189 |
-
"""
|
190 |
-
if self.settings.use_rag:
|
191 |
-
context_documents = self.rag(query)
|
192 |
-
context = "\n".join(context_documents) + context
|
193 |
-
|
194 |
-
output = {}
|
195 |
-
for field_name, field in class_annotation.__fields__.items():
|
196 |
-
type_annotation = field.annotation
|
197 |
-
description = field.description
|
198 |
-
description_annotation = f"({description})" if description else ""
|
199 |
-
|
200 |
-
result = self.query(f"Extract the field {field_name} {description_annotation} to a {type_annotation}", context=context)
|
201 |
-
|
202 |
-
# Process result based on field type
|
203 |
-
if type_annotation == bool:
|
204 |
-
parsed_result = (
|
205 |
-
True if re.search(r'\b(yes|true)\b', result, re.IGNORECASE)
|
206 |
-
else (False if re.search(r'\b(no|false)\b', result, re.IGNORECASE) else None)
|
207 |
-
)
|
208 |
-
elif type_annotation in [int, float]:
|
209 |
-
parsed_result = re.sub(r'[^0-9.]', '', result)
|
210 |
-
if parsed_result:
|
211 |
-
try:
|
212 |
-
parsed_result = type_annotation(parsed_result)
|
213 |
-
except Exception:
|
214 |
-
parsed_result = None
|
215 |
-
else:
|
216 |
-
parsed_result = None
|
217 |
-
elif type_annotation == str:
|
218 |
-
parsed_result = result.strip()
|
219 |
-
else:
|
220 |
-
raise ValueError(f"Unsupported type annotation: {type_annotation}")
|
221 |
-
|
222 |
-
output[field_name] = parsed_result
|
223 |
-
|
224 |
-
return class_annotation(**output)
|
225 |
-
|
226 |
-
### End Library Code
|
227 |
|
228 |
|
229 |
def log_time(func):
|
@@ -235,7 +37,6 @@ def log_time(func):
|
|
235 |
return result
|
236 |
return wrapper
|
237 |
|
238 |
-
default_documents = []
|
239 |
|
240 |
API_KEY = os.environ.get("brave_api_key")
|
241 |
|
@@ -258,11 +59,26 @@ def brave_search(query, count=3):
|
|
258 |
@traceable
|
259 |
@log_time
|
260 |
def query_teapot(prompt, context, user_input, teapot_ai):
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
@log_time
|
268 |
def handle_chat(user_prompt, user_input, teapot_ai):
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import hashlib
|
3 |
import os
|
4 |
import requests
|
|
|
18 |
import re
|
19 |
import os
|
20 |
|
21 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
22 |
|
23 |
+
with st.spinner('Loading Model...'):
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def log_time(func):
|
|
|
37 |
return result
|
38 |
return wrapper
|
39 |
|
|
|
40 |
|
41 |
API_KEY = os.environ.get("brave_api_key")
|
42 |
|
|
|
59 |
@traceable
|
60 |
@log_time
|
61 |
def query_teapot(prompt, context, user_input, teapot_ai):
|
62 |
+
input_text = prompt + "\n" + context + "\n" + user_input
|
63 |
+
|
64 |
+
start_time = time.time()
|
65 |
+
|
66 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
67 |
+
input_length = inputs["input_ids"].shape[1]
|
68 |
+
|
69 |
+
output = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
70 |
+
|
71 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
72 |
+
total_length = output.shape[1] # Includes both input and output tokens
|
73 |
+
output_length = total_length - input_length # Extract output token count
|
74 |
+
|
75 |
+
end_time = time.time()
|
76 |
+
|
77 |
+
elapsed_time = end_time - start_time
|
78 |
+
tokens_per_second = total_length / elapsed_time if elapsed_time > 0 else float("inf")
|
79 |
+
|
80 |
+
return f"{output_text} ({tokens_per_second} tokens per second)"
|
81 |
+
|
82 |
|
83 |
@log_time
|
84 |
def handle_chat(user_prompt, user_input, teapot_ai):
|