Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,255 @@ import requests
|
|
6 |
import time
|
7 |
from langsmith import traceable
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def log_time(func):
|
10 |
def wrapper(*args, **kwargs):
|
11 |
start_time = time.time()
|
|
|
6 |
import time
|
7 |
from langsmith import traceable
|
8 |
|
9 |
+
|
10 |
+
##### Begin Library Code
|
11 |
+
from transformers import pipeline
|
12 |
+
import torch
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
14 |
+
import numpy as np
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
from pydantic import BaseModel
|
17 |
+
from typing import List, Optional
|
18 |
+
from tqdm import tqdm
|
19 |
+
import re
|
20 |
+
import os
|
21 |
+
|
22 |
+
|
23 |
+
class TeapotAISettings(BaseModel):
|
24 |
+
"""
|
25 |
+
Pydantic settings model for TeapotAI configuration.
|
26 |
+
|
27 |
+
Attributes:
|
28 |
+
use_rag (bool): Whether to use RAG (Retrieve and Generate).
|
29 |
+
rag_num_results (int): Number of top documents to retrieve based on similarity.
|
30 |
+
rag_similarity_threshold (float): Similarity threshold for document relevance.
|
31 |
+
verbose (bool): Whether to print verbose updates.
|
32 |
+
log_level (str): The log level for the application (e.g., "info", "debug").
|
33 |
+
"""
|
34 |
+
use_rag: bool = True # Whether to use RAG (Retrieve and Generate)
|
35 |
+
rag_num_results: int = 3 # Number of top documents to retrieve based on similarity
|
36 |
+
rag_similarity_threshold: float = 0.5 # Similarity threshold for document relevance
|
37 |
+
verbose: bool = True # Whether to print verbose updates
|
38 |
+
log_level: str = "info" # Log level setting (e.g., 'info', 'debug')
|
39 |
+
|
40 |
+
|
41 |
+
class TeapotAI:
|
42 |
+
"""
|
43 |
+
TeapotAI class that interacts with a language model for text generation and retrieval tasks.
|
44 |
+
|
45 |
+
Attributes:
|
46 |
+
model (str): The model identifier.
|
47 |
+
model_revision (Optional[str]): The revision/version of the model.
|
48 |
+
api_key (Optional[str]): API key for accessing the model (if required).
|
49 |
+
settings (TeapotAISettings): Configuration settings for the AI instance.
|
50 |
+
generator (callable): The pipeline for text generation.
|
51 |
+
embedding_model (callable): The pipeline for feature extraction (document embeddings).
|
52 |
+
documents (List[str]): List of documents for retrieval.
|
53 |
+
document_embeddings (np.ndarray): Embeddings for the provided documents.
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(self, model_revision: Optional[str] = None, api_key: Optional[str] = None,
|
57 |
+
documents: List[str] = [], settings: TeapotAISettings = TeapotAISettings()):
|
58 |
+
"""
|
59 |
+
Initializes the TeapotAI class with optional model_revision and api_key.
|
60 |
+
|
61 |
+
Parameters:
|
62 |
+
model_revision (Optional[str]): The revision/version of the model to use.
|
63 |
+
api_key (Optional[str]): The API key for accessing the model if needed.
|
64 |
+
documents (List[str]): A list of documents for retrieval. Defaults to an empty list.
|
65 |
+
settings (TeapotAISettings): The settings configuration (defaults to TeapotAISettings()).
|
66 |
+
"""
|
67 |
+
self.model = "teapotai/teapotllm"
|
68 |
+
self.model_revision = model_revision
|
69 |
+
self.api_key = api_key
|
70 |
+
self.settings = settings
|
71 |
+
|
72 |
+
if self.settings.verbose:
|
73 |
+
print(""" _____ _ _ ___ __o__ _;;
|
74 |
+
|_ _|__ __ _ _ __ ___ | |_ / \ |_ _| __ /-___-\__/ /
|
75 |
+
| |/ _ \/ _` | '_ \ / _ \| __| / _ \ | | ( | |__/
|
76 |
+
| | __/ (_| | |_) | (_) | |_ / ___ \ | | \_|~~~~~~~|
|
77 |
+
|_|\___|\__,_| .__/ \___/ \__/ /_/ \_\___| \_____/
|
78 |
+
|_| """)
|
79 |
+
|
80 |
+
if self.settings.verbose:
|
81 |
+
print(f"Loading Model: {self.model} Revision: {self.model_revision or 'Latest'}")
|
82 |
+
|
83 |
+
# self.generator = pipeline("text2text-generation", model=self.model, revision=self.model_revision) if model_revision else pipeline("text2text-generation", model=self.model)
|
84 |
+
|
85 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model)
|
86 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(self.model)
|
87 |
+
model.eval()
|
88 |
+
|
89 |
+
# Quantization settings
|
90 |
+
quantization_dtype = torch.qint8 # or torch.float16
|
91 |
+
quantization_config = torch.quantization.get_default_qconfig('fbgemm') # or 'onednn'
|
92 |
+
|
93 |
+
self.quantized_model = torch.quantization.quantize_dynamic(
|
94 |
+
model, {torch.nn.Linear}, dtype=quantization_dtype
|
95 |
+
)
|
96 |
+
|
97 |
+
self.documents = documents
|
98 |
+
|
99 |
+
if self.settings.use_rag and self.documents:
|
100 |
+
self.embedding_model = pipeline("feature-extraction", model="teapotai/teapotembedding")
|
101 |
+
self.document_embeddings = self._generate_document_embeddings(self.documents)
|
102 |
+
|
103 |
+
def _generate_document_embeddings(self, documents: List[str]) -> np.ndarray:
|
104 |
+
"""
|
105 |
+
Generate embeddings for the provided documents using the embedding model.
|
106 |
+
|
107 |
+
Parameters:
|
108 |
+
documents (List[str]): A list of document strings to generate embeddings for.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
np.ndarray: A NumPy array of document embeddings.
|
112 |
+
"""
|
113 |
+
embeddings = []
|
114 |
+
|
115 |
+
if self.settings.verbose:
|
116 |
+
print("Generating embeddings for documents...")
|
117 |
+
for doc in tqdm(documents, desc="Document Embedding", unit="doc"):
|
118 |
+
embeddings.append(self.embedding_model(doc)[0][0])
|
119 |
+
else:
|
120 |
+
for doc in documents:
|
121 |
+
embeddings.append(self.embedding_model(doc)[0][0])
|
122 |
+
|
123 |
+
return np.array(embeddings)
|
124 |
+
|
125 |
+
def rag(self, query: str) -> List[str]:
|
126 |
+
"""
|
127 |
+
Perform RAG (Retrieve and Generate) by finding the most relevant documents based on cosine similarity.
|
128 |
+
|
129 |
+
Parameters:
|
130 |
+
query (str): The query string to find relevant documents for.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
List[str]: A list of the top N most relevant documents.
|
134 |
+
"""
|
135 |
+
if not self.settings.use_rag or not self.documents:
|
136 |
+
return []
|
137 |
+
|
138 |
+
query_embedding = self.embedding_model(query)[0][0]
|
139 |
+
similarities = cosine_similarity([query_embedding], self.document_embeddings)[0]
|
140 |
+
|
141 |
+
filtered_indices = [i for i, similarity in enumerate(similarities) if similarity >= self.settings.rag_similarity_threshold]
|
142 |
+
top_n_indices = sorted(filtered_indices, key=lambda i: similarities[i], reverse=True)[:self.settings.rag_num_results]
|
143 |
+
|
144 |
+
return [self.documents[i] for i in top_n_indices]
|
145 |
+
|
146 |
+
def generate(self, input_text: str) -> str:
|
147 |
+
"""
|
148 |
+
Generate text based on the input string using the teapotllm model.
|
149 |
+
|
150 |
+
Parameters:
|
151 |
+
input_text (str): The text prompt to generate a response for.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
str: The generated output from the model.
|
155 |
+
"""
|
156 |
+
|
157 |
+
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
158 |
+
|
159 |
+
|
160 |
+
with torch.no_grad():
|
161 |
+
outputs = self.quantized_model.generate(inputs["input_ids"], max_length=512)
|
162 |
+
|
163 |
+
|
164 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
165 |
+
|
166 |
+
|
167 |
+
if self.settings.log_level == "debug":
|
168 |
+
print(input_text)
|
169 |
+
print(result)
|
170 |
+
|
171 |
+
return result
|
172 |
+
|
173 |
+
def query(self, query: str, context: str = "") -> str:
|
174 |
+
"""
|
175 |
+
Handle a query and context, using RAG if no context is provided, and return a generated response.
|
176 |
+
|
177 |
+
Parameters:
|
178 |
+
query (str): The query string to be answered.
|
179 |
+
context (str): The context to guide the response. Defaults to an empty string.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
str: The generated response based on the input query and context.
|
183 |
+
"""
|
184 |
+
if self.settings.use_rag and not context:
|
185 |
+
context = "\n".join(self.rag(query)) # Perform RAG if no context is provided
|
186 |
+
|
187 |
+
input_text = f"Context: {context}\nQuery: {query}"
|
188 |
+
return self.generate(input_text)
|
189 |
+
|
190 |
+
def chat(self, conversation_history: List[dict]) -> str:
|
191 |
+
"""
|
192 |
+
Engage in a chat by taking a list of previous messages and generating a response.
|
193 |
+
|
194 |
+
Parameters:
|
195 |
+
conversation_history (List[dict]): A list of previous messages, each containing 'content'.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
str: The generated response based on the conversation history.
|
199 |
+
"""
|
200 |
+
chat_history = "".join([message['content'] + "\n" for message in conversation_history])
|
201 |
+
|
202 |
+
if self.settings.use_rag:
|
203 |
+
context_documents = self.rag(chat_history) # Perform RAG on the conversation history
|
204 |
+
context = "\n".join(context_documents)
|
205 |
+
chat_history = f"Context: {context}\n" + chat_history
|
206 |
+
|
207 |
+
return self.generate(chat_history + "\n" + "agent:")
|
208 |
+
|
209 |
+
def extract(self, class_annotation: BaseModel, query: str = "", context: str = "") -> BaseModel:
|
210 |
+
"""
|
211 |
+
Extract fields from a Pydantic class annotation by querying and processing each field.
|
212 |
+
|
213 |
+
Parameters:
|
214 |
+
class_annotation (BaseModel): The Pydantic class to extract fields from.
|
215 |
+
query (str): The query string to guide the extraction. Defaults to an empty string.
|
216 |
+
context (str): Optional context for the query.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
BaseModel: An instance of the provided Pydantic class with extracted field values.
|
220 |
+
"""
|
221 |
+
if self.settings.use_rag:
|
222 |
+
context_documents = self.rag(query)
|
223 |
+
context = "\n".join(context_documents) + context
|
224 |
+
|
225 |
+
output = {}
|
226 |
+
for field_name, field in class_annotation.__fields__.items():
|
227 |
+
type_annotation = field.annotation
|
228 |
+
description = field.description
|
229 |
+
description_annotation = f"({description})" if description else ""
|
230 |
+
|
231 |
+
result = self.query(f"Extract the field {field_name} {description_annotation} to a {type_annotation}", context=context)
|
232 |
+
|
233 |
+
# Process result based on field type
|
234 |
+
if type_annotation == bool:
|
235 |
+
parsed_result = (
|
236 |
+
True if re.search(r'\b(yes|true)\b', result, re.IGNORECASE)
|
237 |
+
else (False if re.search(r'\b(no|false)\b', result, re.IGNORECASE) else None)
|
238 |
+
)
|
239 |
+
elif type_annotation in [int, float]:
|
240 |
+
parsed_result = re.sub(r'[^0-9.]', '', result)
|
241 |
+
if parsed_result:
|
242 |
+
try:
|
243 |
+
parsed_result = type_annotation(parsed_result)
|
244 |
+
except Exception:
|
245 |
+
parsed_result = None
|
246 |
+
else:
|
247 |
+
parsed_result = None
|
248 |
+
elif type_annotation == str:
|
249 |
+
parsed_result = result.strip()
|
250 |
+
else:
|
251 |
+
raise ValueError(f"Unsupported type annotation: {type_annotation}")
|
252 |
+
|
253 |
+
output[field_name] = parsed_result
|
254 |
+
|
255 |
+
return class_annotation(**output)
|
256 |
+
|
257 |
+
##### End Library Code
|
258 |
def log_time(func):
|
259 |
def wrapper(*args, **kwargs):
|
260 |
start_time = time.time()
|