import streamlit as st
from teapotai import TeapotAI, TeapotAISettings
import hashlib
import os
import requests
import time
from langsmith import traceable
def log_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
return result
return wrapper
default_documents = []
API_KEY = os.environ.get("brave_api_key")
@log_time
def brave_search(query, count=3):
url = "https://api.search.brave.com/res/v1/web/search"
headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY}
params = {"q": query, "count": count}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
results = response.json().get("web", {}).get("results", [])
print(results)
return [(res["title"], res["description"], res["url"]) for res in results]
else:
print(f"Error: {response.status_code}, {response.text}")
return []
@traceable
@log_time
def query_teapot(prompt, context, user_input, teapot_ai):
response = teapot_ai.query(
context=prompt+"\n"+context,
query=user_input
)
return response
@log_time
def handle_chat(user_input, teapot_ai):
results = brave_search(user_input)
documents = [desc.replace('','').replace('','') for _, desc, _ in results]
st.sidebar.write("---")
st.sidebar.write("## RAG Documents")
for (title, description, url) in results:
# Display Results
st.sidebar.write(f"## {title}")
st.sidebar.write(f"{description.replace('','').replace('','')}")
st.sidebar.write(f"[Source]({url})")
st.sidebar.write("---")
context = "\n".join(documents)
prompt = "You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."
response = query_teapot(prompt, context, user_input, teapot_ai)
return response
def suggestion_button(suggestion_text, teapot_ai):
if st.button(suggestion_text):
handle_chat(suggestion_text, teapot_ai)
@log_time
def hash_documents(documents):
return hashlib.sha256("\n".join(documents).encode("utf-8")).hexdigest()
def main():
st.set_page_config(page_title="TeapotAI Chat", page_icon=":robot_face:", layout="wide")
st.sidebar.header("Retrieval Augmented Generation")
user_documents = st.sidebar.text_area("Enter documents, each on a new line", value="\n".join(default_documents))
documents = [doc.strip() for doc in user_documents.split("\n") if doc.strip()]
new_documents_hash = hash_documents(documents)
if "documents_hash" not in st.session_state or st.session_state.documents_hash != new_documents_hash:
with st.spinner('Loading Model and Embeddings...'):
start_time = time.time()
teapot_ai = TeapotAI(documents=documents or default_documents, settings=TeapotAISettings(rag_num_results=3))
end_time = time.time()
print(f"Model loaded in {end_time - start_time:.4f} seconds")
st.session_state.documents_hash = new_documents_hash
st.session_state.teapot_ai = teapot_ai
else:
teapot_ai = st.session_state.teapot_ai
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hi, I am Teapot AI, how can I help you?"}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
user_input = st.chat_input("Ask me anything")
s1, s2, s3 = st.columns([1, 2, 3])
with s1:
suggestion_button("Tell me about the varieties of tea", teapot_ai)
with s2:
suggestion_button("Who was born first, Alan Turing or John von Neumann?", teapot_ai)
with s3:
suggestion_button("Extract Google's stock price", teapot_ai)
if user_input:
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner('Generating Response...'):
response = handle_chat(user_input, teapot_ai)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
st.markdown("### Suggested Questions")
if __name__ == "__main__":
main()