tebakaja commited on
Commit
e8ac98a
·
1 Parent(s): e842f81

[ update ]: Cythonize Machine Learning Utilities

Browse files
Files changed (42) hide show
  1. .github/workflows/gru_pipeline.yaml +13 -4
  2. .github/workflows/lstm_gru_pipeline.yaml +13 -4
  3. .github/workflows/lstm_pipeline.yaml +13 -4
  4. Makefile +53 -2
  5. diagram/cryptocurrency_prediction.jpg +0 -0
  6. diagram/diagram.ai +0 -0
  7. postman/build/lib.linux-x86_64-3.10/json.cpython-310-x86_64-linux-gnu.so +0 -0
  8. postman/build/temp.linux-x86_64-3.10/json.o +0 -0
  9. converter.py → postman/converter.py +2 -2
  10. postman/json.c +1 -0
  11. postman/json.cpython-310-x86_64-linux-gnu.so +0 -0
  12. postman/json.pyx +1000 -0
  13. postman/setup.py +9 -0
  14. restful/utilities.py +0 -61
  15. training.py +0 -244
  16. training/build/lib.linux-x86_64-3.10/data_processor.cpython-310-x86_64-linux-gnu.so +0 -0
  17. training/build/lib.linux-x86_64-3.10/main.cpython-310-x86_64-linux-gnu.so +0 -0
  18. training/build/lib.linux-x86_64-3.10/model_builder.cpython-310-x86_64-linux-gnu.so +0 -0
  19. training/build/lib.linux-x86_64-3.10/post_processor.cpython-310-x86_64-linux-gnu.so +0 -0
  20. training/build/lib.linux-x86_64-3.10/trainer.cpython-310-x86_64-linux-gnu.so +0 -0
  21. training/build/temp.linux-x86_64-3.10/data_processor.o +0 -0
  22. training/build/temp.linux-x86_64-3.10/main.o +0 -0
  23. training/build/temp.linux-x86_64-3.10/model_builder.o +0 -0
  24. training/build/temp.linux-x86_64-3.10/post_processor.o +0 -0
  25. training/build/temp.linux-x86_64-3.10/trainer.o +0 -0
  26. training/data_processor.c +0 -0
  27. training/data_processor.cpython-310-x86_64-linux-gnu.so +0 -0
  28. training/data_processor.pyx +55 -0
  29. training/main.c +0 -0
  30. training/main.cpython-310-x86_64-linux-gnu.so +0 -0
  31. training/main.pyx +85 -0
  32. training/model_builder.c +0 -0
  33. training/model_builder.cpython-310-x86_64-linux-gnu.so +0 -0
  34. training/model_builder.pyx +74 -0
  35. training/post_processor.c +0 -0
  36. training/post_processor.cpython-310-x86_64-linux-gnu.so +0 -0
  37. training/post_processor.pyx +17 -0
  38. training/setup.py +24 -0
  39. training/trainer.c +0 -0
  40. training/trainer.cpython-310-x86_64-linux-gnu.so +0 -0
  41. training/trainer.pyx +31 -0
  42. trainingcli.py +30 -0
.github/workflows/gru_pipeline.yaml CHANGED
@@ -127,6 +127,15 @@ jobs:
127
  with:
128
  name: datasets
129
 
 
 
 
 
 
 
 
 
 
130
  - name: Modeling and Training
131
  # if: env.match != 'true'
132
  run: |
@@ -136,7 +145,7 @@ jobs:
136
  mkdir pickles
137
  mkdir posttrained
138
 
139
- python training.py \
140
  --epochs=200 \
141
  --batchs=32 \
142
  --sequences=5 \
@@ -568,9 +577,9 @@ jobs:
568
  sleep 60
569
  chmod +x endpoints_test.sh && ./endpoints_test.sh
570
 
571
- - name: Set Pipeline Schedule
572
- # if: env.match != 'true'
573
- run: echo "$(date +'%Y-%m-%d')" > schedulers/gru_schedule.ctl
574
 
575
  # - name: Commit changes
576
  # if: env.match != 'true'
 
127
  with:
128
  name: datasets
129
 
130
+ - name: Install Cython and Build ML Module
131
+ run: |
132
+ apt-get update && \
133
+ apt-get install -y gcc python3-dev gnupg
134
+
135
+ pip install cython
136
+ cd training && \
137
+ python setup.py build_ext --inplace && cd ..
138
+
139
  - name: Modeling and Training
140
  # if: env.match != 'true'
141
  run: |
 
145
  mkdir pickles
146
  mkdir posttrained
147
 
148
+ python trainingcli.py \
149
  --epochs=200 \
150
  --batchs=32 \
151
  --sequences=5 \
 
577
  sleep 60
578
  chmod +x endpoints_test.sh && ./endpoints_test.sh
579
 
580
+ # - name: Set Pipeline Schedule
581
+ # if: env.match != 'true'
582
+ # run: echo "$(date +'%Y-%m-%d')" > schedulers/gru_schedule.ctl
583
 
584
  # - name: Commit changes
585
  # if: env.match != 'true'
.github/workflows/lstm_gru_pipeline.yaml CHANGED
@@ -127,6 +127,15 @@ jobs:
127
  with:
128
  name: datasets
129
 
 
 
 
 
 
 
 
 
 
130
  - name: Modeling and Training
131
  # if: env.match != 'true'
132
  run: |
@@ -136,15 +145,15 @@ jobs:
136
  mkdir pickles
137
  mkdir posttrained
138
 
139
- python training.py \
140
  --epochs=200 \
141
  --batchs=32 \
142
  --sequences=5 \
143
  --algorithm=LSTM_GRU
144
 
145
- - name: Set Pipeline Schedule
146
- # if: env.match != 'true'
147
- run: echo "$(date +'%Y-%m-%d')" > schedulers/lstm_gru_schedule.ctl
148
 
149
  - name: Zip Posttrained, Models, and Pickles
150
  # if: env.match != 'true'
 
127
  with:
128
  name: datasets
129
 
130
+ - name: Install Cython and Build ML Module
131
+ run: |
132
+ apt-get update && \
133
+ apt-get install -y gcc python3-dev gnupg
134
+
135
+ pip install cython
136
+ cd training && \
137
+ python setup.py build_ext --inplace && cd ..
138
+
139
  - name: Modeling and Training
140
  # if: env.match != 'true'
141
  run: |
 
145
  mkdir pickles
146
  mkdir posttrained
147
 
148
+ python trainingcli.py \
149
  --epochs=200 \
150
  --batchs=32 \
151
  --sequences=5 \
152
  --algorithm=LSTM_GRU
153
 
154
+ # - name: Set Pipeline Schedule
155
+ # if: env.match != 'true'
156
+ # run: echo "$(date +'%Y-%m-%d')" > schedulers/lstm_gru_schedule.ctl
157
 
158
  - name: Zip Posttrained, Models, and Pickles
159
  # if: env.match != 'true'
.github/workflows/lstm_pipeline.yaml CHANGED
@@ -126,6 +126,15 @@ jobs:
126
  with:
127
  name: datasets
128
 
 
 
 
 
 
 
 
 
 
129
  - name: Modeling and Training
130
  # if: env.match != 'true'
131
  run: |
@@ -135,15 +144,15 @@ jobs:
135
  mkdir pickles
136
  mkdir posttrained
137
 
138
- python training.py \
139
  --epochs=200 \
140
  --batchs=32 \
141
  --sequences=5 \
142
  --algorithm=LSTM
143
 
144
- - name: Set Pipeline Schedule
145
- # if: env.match != 'true'
146
- run: echo "$(date +'%Y-%m-%d')" > schedulers/lstm_schedule.ctl
147
 
148
  - name: Zip Posttrained, Models, and Pickles
149
  # if: env.match != 'true'
 
126
  with:
127
  name: datasets
128
 
129
+ - name: Install Cython and Build ML Module
130
+ run: |
131
+ apt-get update && \
132
+ apt-get install -y gcc python3-dev gnupg
133
+
134
+ pip install cython
135
+ cd training && \
136
+ python setup.py build_ext --inplace && cd ..
137
+
138
  - name: Modeling and Training
139
  # if: env.match != 'true'
140
  run: |
 
144
  mkdir pickles
145
  mkdir posttrained
146
 
147
+ python trainingcli.py \
148
  --epochs=200 \
149
  --batchs=32 \
150
  --sequences=5 \
151
  --algorithm=LSTM
152
 
153
+ # - name: Set Pipeline Schedule
154
+ # if: env.match != 'true'
155
+ # run: echo "$(date +'%Y-%m-%d')" > schedulers/lstm_schedule.ctl
156
 
157
  - name: Zip Posttrained, Models, and Pickles
158
  # if: env.match != 'true'
Makefile CHANGED
@@ -1,5 +1,56 @@
 
 
 
 
 
 
 
 
1
  cutils:
2
- cd restful/cutils && python setup.py build_ext --inplace && cd ../..
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
4
  run:
5
- uvicorn app:app --host 0.0.0.0 --port 7860 --reload
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # makefile for building and running the application
2
+
3
+ .PHONY: all cutils ctrain cpostman converter run clean
4
+
5
+ # default target to build all components
6
+ all: cutils ctrain cpostman
7
+
8
+ # build Cython extensions in restful/cutils
9
  cutils:
10
+ @echo "Building Cython extensions in restful/cutils..."
11
+ @cd restful/cutils && python setup.py build_ext --inplace
12
+
13
+
14
+ # build Cython extensions in training
15
+ ctrain:
16
+ @echo "Building Cython extensions in training..."
17
+ @cd training && python setup.py build_ext --inplace
18
+
19
+
20
+ # build Cython extensions in postman
21
+ cpostman:
22
+ @echo "Building Cython extensions in postman..."
23
+ @cd postman && python setup.py build_ext --inplace
24
 
25
+
26
+ # run the converter script
27
+ converter:
28
+ @echo "Running converter script..."
29
+ @python postman/converter.py
30
+
31
+
32
+ # run the application with uvicorn
33
  run:
34
+ @echo "Starting the application..."
35
+ @uvicorn app:app --host 0.0.0.0 --port 7860 --reload
36
+
37
+
38
+ # clean up build artifacts
39
+ clean:
40
+ @echo "Cleaning up build artifacts..."
41
+ @find . -type f -name "*.so" -delete
42
+ @find . -type f -name "*.c" -delete
43
+ @find . -type f -name "*.cpp" -delete
44
+ @find . -type d -name "__pycache__" -exec rm -r {} +
45
+
46
+
47
+ # help message
48
+ help:
49
+ @echo "Usage:"
50
+ @echo " make all - Build all Cython extensions"
51
+ @echo " make cutils - Build Cython extensions in restful/cutils"
52
+ @echo " make ctrain - Build Cython extensions in training"
53
+ @echo " make cpostman - Build Cython extensions in postman"
54
+ @echo " make converter - Run the converter script"
55
+ @echo " make run - Start the application with Uvicorn"
56
+ @echo " make clean - Remove build artifacts"
diagram/cryptocurrency_prediction.jpg CHANGED
diagram/diagram.ai CHANGED
The diff for this file is too large to render. See raw diff
 
postman/build/lib.linux-x86_64-3.10/json.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (380 kB). View file
 
postman/build/temp.linux-x86_64-3.10/json.o ADDED
Binary file (688 kB). View file
 
converter.py → postman/converter.py RENAMED
@@ -1,5 +1,6 @@
1
  import json
2
 
 
3
  class JSONProcessor:
4
  def __init__(self, input_file: str, output_file: str) -> None:
5
  self.input_file: str = input_file
@@ -30,5 +31,4 @@ def main():
30
  symbols = processor.extract_symbols()
31
  processor.save_json(symbols)
32
 
33
-
34
- if __name__ == "__main__": main()
 
1
  import json
2
 
3
+ # Json Processor
4
  class JSONProcessor:
5
  def __init__(self, input_file: str, output_file: str) -> None:
6
  self.input_file: str = input_file
 
31
  symbols = processor.extract_symbols()
32
  processor.save_json(symbols)
33
 
34
+ if __name__ == "__main__": main()
 
postman/json.c ADDED
@@ -0,0 +1 @@
 
 
1
+ #error Do not use this file, it is the result of a failed Cython compilation.
postman/json.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (380 kB). View file
 
postman/json.pyx ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from libc.stdlib cimport malloc, free
2
+ from cpython.pycapsule cimport PyCapsule_Import
3
+ from cpython.object cimport PyObject
4
+ from cpython.dict cimport PyDict_GetItemString
5
+
6
+
7
+ cdef class JSONProcessor:
8
+ cdef str input_file
9
+ cdef str output_file
10
+ cdef object data
11
+
12
+ def __init__(self, str input_file, str output_file):
13
+ self.input_file = input_file
14
+ self.output_file = output_file
15
+ self.data = None
16
+
17
+ cpdef void load_json(self):
18
+ import json
19
+ with open(self.input_file, 'r') as file:
20
+ self.data = json.load(file)
21
+
22
+ cpdef list extract_symbols(self):
23
+ if self.data is None:
24
+ raise ValueError("data not loaded. call load_json() first.")
25
+ quotes = self.data['finance']['result'][0]['quotes']
26
+ return [quote['symbol'] for quote in quotes]
27
+
28
+ cpdef void save_json(self, list data):
29
+ import json
30
+ with open(self.output_file, 'w') as file:
31
+ json.dump({'symbols': data}, file, indent=4)
32
+ print(f'saved: {self.output_file}')
33
+
34
+
35
+ """ --- """
36
+ """ --- """
37
+ """ --- """
38
+ """ --- """
39
+ """ --- """
40
+ """ --- """
41
+ """ --- """
42
+ """ --- """
43
+ """ --- """
44
+ """ --- """
45
+ """ --- """
46
+ """ --- """
47
+ """ --- """
48
+ """ --- """
49
+ """ --- """
50
+ """ --- """
51
+ """ --- """
52
+ """ --- """
53
+ """ --- """
54
+ """ --- """
55
+ """ --- """
56
+ """ --- """
57
+ """ --- """
58
+ """ --- """
59
+ """ --- """
60
+ """ --- """
61
+ """ --- """
62
+ """ --- """
63
+ """ --- """
64
+ """ --- """
65
+ """ --- """
66
+ """ --- """
67
+ """ --- """
68
+ """ --- """
69
+ """ --- """
70
+ """ --- """
71
+ """ --- """
72
+ """ --- """
73
+ """ --- """
74
+ """ --- """
75
+ """ --- """
76
+ """ --- """
77
+ """ --- """
78
+ """ --- """
79
+ """ --- """
80
+ """ --- """
81
+ """ --- """
82
+ """ --- """
83
+ """ --- """
84
+ """ --- """
85
+ """ --- """
86
+ """ --- """
87
+ """ --- """
88
+ """ --- """
89
+ """ --- """
90
+ """ --- """
91
+ """ --- """
92
+ """ --- """
93
+ """ --- """
94
+ """ --- """
95
+ """ --- """
96
+ """ --- """
97
+ """ --- """
98
+ """ --- """
99
+ """ --- """
100
+ """ --- """
101
+ """ --- """
102
+ """ --- """
103
+ """ --- """
104
+ """ --- """
105
+ """ --- """
106
+ """ --- """
107
+ """ --- """
108
+ """ --- """
109
+ """ --- """
110
+ """ --- """
111
+ """ --- """
112
+ """ --- """
113
+ """ --- """
114
+ """ --- """
115
+ """ --- """
116
+ """ --- """
117
+ """ --- """
118
+ """ --- """
119
+ """ --- """
120
+ """ --- """
121
+ """ --- """
122
+ """ --- """
123
+ """ --- """
124
+ """ --- """
125
+ """ --- """
126
+ """ --- """
127
+ """ --- """
128
+ """ --- """
129
+ """ --- """
130
+ """ --- """
131
+ """ --- """
132
+ """ --- """
133
+ """ --- """
134
+ """ --- """
135
+ """ --- """
136
+ """ --- """
137
+ """ --- """
138
+ """ --- """
139
+ """ --- """
140
+ """ --- """
141
+ """ --- """
142
+ """ --- """
143
+ """ --- """
144
+ """ --- """
145
+ """ --- """
146
+ """ --- """
147
+ """ --- """
148
+ """ --- """
149
+ """ --- """
150
+ """ --- """
151
+ """ --- """
152
+ """ --- """
153
+ """ --- """
154
+ """ --- """
155
+ """ --- """
156
+ """ --- """
157
+ """ --- """
158
+ """ --- """
159
+ """ --- """
160
+ """ --- """
161
+ """ --- """
162
+ """ --- """
163
+ """ --- """
164
+ """ --- """
165
+ """ --- """
166
+ """ --- """
167
+ """ --- """
168
+ """ --- """
169
+ """ --- """
170
+ """ --- """
171
+ """ --- """
172
+ """ --- """
173
+ """ --- """
174
+ """ --- """
175
+ """ --- """
176
+ """ --- """
177
+ """ --- """
178
+ """ --- """
179
+ """ --- """
180
+ """ --- """
181
+ """ --- """
182
+ """ --- """
183
+ """ --- """
184
+ """ --- """
185
+ """ --- """
186
+ """ --- """
187
+ """ --- """
188
+ """ --- """
189
+ """ --- """
190
+ """ --- """
191
+ """ --- """
192
+ """ --- """
193
+ """ --- """
194
+ """ --- """
195
+ """ --- """
196
+ """ --- """
197
+ """ --- """
198
+ """ --- """""" --- """
199
+ """ --- """
200
+ """ --- """
201
+ """ --- """
202
+ """ --- """
203
+ """ --- """
204
+ """ --- """
205
+ """ --- """
206
+ """ --- """
207
+ """ --- """
208
+ """ --- """
209
+ """ --- """
210
+ """ --- """
211
+ """ --- """
212
+ """ --- """
213
+ """ --- """
214
+ """ --- """
215
+ """ --- """
216
+ """ --- """
217
+ """ --- """
218
+ """ --- """
219
+ """ --- """
220
+ """ --- """
221
+ """ --- """
222
+ """ --- """
223
+ """ --- """
224
+ """ --- """
225
+ """ --- """
226
+ """ --- """
227
+ """ --- """
228
+ """ --- """
229
+ """ --- """
230
+ """ --- """
231
+ """ --- """
232
+ """ --- """
233
+ """ --- """
234
+ """ --- """
235
+ """ --- """
236
+ """ --- """
237
+ """ --- """
238
+ """ --- """
239
+ """ --- """
240
+ """ --- """
241
+ """ --- """
242
+ """ --- """
243
+ """ --- """
244
+ """ --- """
245
+ """ --- """
246
+ """ --- """
247
+ """ --- """
248
+ """ --- """
249
+ """ --- """
250
+ """ --- """
251
+ """ --- """
252
+ """ --- """
253
+ """ --- """
254
+ """ --- """
255
+ """ --- """
256
+ """ --- """
257
+ """ --- """
258
+ """ --- """
259
+ """ --- """
260
+ """ --- """
261
+ """ --- """
262
+ """ --- """
263
+ """ --- """
264
+ """ --- """
265
+ """ --- """
266
+ """ --- """
267
+ """ --- """
268
+ """ --- """
269
+ """ --- """
270
+ """ --- """
271
+ """ --- """
272
+ """ --- """
273
+ """ --- """
274
+ """ --- """
275
+ """ --- """
276
+ """ --- """
277
+ """ --- """
278
+ """ --- """
279
+ """ --- """
280
+ """ --- """
281
+ """ --- """
282
+ """ --- """
283
+ """ --- """
284
+ """ --- """
285
+ """ --- """
286
+ """ --- """
287
+ """ --- """
288
+ """ --- """
289
+ """ --- """
290
+ """ --- """
291
+ """ --- """
292
+ """ --- """
293
+ """ --- """
294
+ """ --- """
295
+ """ --- """
296
+ """ --- """
297
+ """ --- """
298
+ """ --- """
299
+ """ --- """
300
+ """ --- """
301
+ """ --- """
302
+ """ --- """
303
+ """ --- """
304
+ """ --- """
305
+ """ --- """
306
+ """ --- """
307
+ """ --- """
308
+ """ --- """
309
+ """ --- """
310
+ """ --- """
311
+ """ --- """
312
+ """ --- """
313
+ """ --- """
314
+ """ --- """
315
+ """ --- """
316
+ """ --- """
317
+ """ --- """
318
+ """ --- """
319
+ """ --- """
320
+ """ --- """
321
+ """ --- """
322
+ """ --- """
323
+ """ --- """
324
+ """ --- """
325
+ """ --- """
326
+ """ --- """
327
+ """ --- """
328
+ """ --- """
329
+ """ --- """
330
+ """ --- """
331
+ """ --- """
332
+ """ --- """
333
+ """ --- """
334
+ """ --- """
335
+ """ --- """
336
+ """ --- """
337
+ """ --- """
338
+ """ --- """
339
+ """ --- """
340
+ """ --- """
341
+ """ --- """
342
+ """ --- """
343
+ """ --- """
344
+ """ --- """
345
+ """ --- """
346
+ """ --- """
347
+ """ --- """
348
+ """ --- """
349
+ """ --- """
350
+ """ --- """
351
+ """ --- """
352
+ """ --- """
353
+ """ --- """
354
+ """ --- """
355
+ """ --- """
356
+ """ --- """
357
+ """ --- """
358
+ """ --- """
359
+ """ --- """
360
+ """ --- """
361
+ """ --- """
362
+ """ --- """
363
+ """ --- """
364
+ """ --- """
365
+ """ --- """
366
+ """ --- """
367
+ """ --- """
368
+ """ --- """
369
+ """ --- """
370
+ """ --- """
371
+ """ --- """
372
+ """ --- """
373
+ """ --- """
374
+ """ --- """
375
+ """ --- """
376
+ """ --- """
377
+ """ --- """
378
+ """ --- """
379
+ """ --- """
380
+ """ --- """
381
+ """ --- """
382
+ """ --- """
383
+ """ --- """
384
+ """ --- """
385
+ """ --- """
386
+ """ --- """
387
+ """ --- """
388
+ """ --- """
389
+ """ --- """
390
+ """ --- """
391
+ """ --- """
392
+ """ --- """
393
+ """ --- """
394
+ """ --- """
395
+ """ --- """
396
+ """ --- """
397
+ """ --- """
398
+ """ --- """
399
+ """ --- """
400
+ """ --- """
401
+ """ --- """
402
+ """ --- """
403
+ """ --- """
404
+ """ --- """
405
+ """ --- """
406
+ """ --- """
407
+ """ --- """
408
+ """ --- """
409
+ """ --- """
410
+ """ --- """
411
+ """ --- """
412
+ """ --- """
413
+ """ --- """
414
+ """ --- """
415
+ """ --- """
416
+ """ --- """
417
+ """ --- """
418
+ """ --- """
419
+ """ --- """
420
+ """ --- """
421
+ """ --- """
422
+ """ --- """
423
+ """ --- """
424
+ """ --- """
425
+ """ --- """
426
+ """ --- """
427
+ """ --- """
428
+ """ --- """
429
+ """ --- """
430
+ """ --- """
431
+ """ --- """
432
+ """ --- """
433
+ """ --- """
434
+ """ --- """
435
+ """ --- """
436
+ """ --- """
437
+ """ --- """
438
+ """ --- """
439
+ """ --- """
440
+ """ --- """
441
+ """ --- """
442
+ """ --- """
443
+ """ --- """
444
+ """ --- """
445
+ """ --- """
446
+ """ --- """
447
+ """ --- """
448
+ """ --- """
449
+ """ --- """
450
+ """ --- """
451
+ """ --- """
452
+ """ --- """
453
+ """ --- """
454
+ """ --- """
455
+ """ --- """
456
+ """ --- """
457
+ """ --- """
458
+ """ --- """
459
+ """ --- """
460
+ """ --- """
461
+ """ --- """
462
+ """ --- """
463
+ """ --- """
464
+ """ --- """
465
+ """ --- """
466
+ """ --- """
467
+ """ --- """
468
+ """ --- """
469
+ """ --- """
470
+ """ --- """
471
+ """ --- """
472
+ """ --- """
473
+ """ --- """
474
+ """ --- """
475
+ """ --- """
476
+ """ --- """
477
+ """ --- """
478
+ """ --- """
479
+ """ --- """
480
+ """ --- """
481
+ """ --- """
482
+ """ --- """
483
+ """ --- """
484
+ """ --- """
485
+ """ --- """
486
+ """ --- """
487
+ """ --- """
488
+ """ --- """
489
+ """ --- """
490
+ """ --- """
491
+ """ --- """
492
+ """ --- """
493
+ """ --- """
494
+ """ --- """
495
+ """ --- """
496
+ """ --- """
497
+ """ --- """
498
+ """ --- """
499
+ """ --- """
500
+ """ --- """
501
+ """ --- """
502
+ """ --- """
503
+ """ --- """
504
+ """ --- """
505
+ """ --- """
506
+ """ --- """
507
+ """ --- """
508
+ """ --- """
509
+ """ --- """
510
+ """ --- """
511
+ """ --- """
512
+ """ --- """
513
+ """ --- """
514
+ """ --- """
515
+ """ --- """
516
+ """ --- """
517
+ """ --- """
518
+ """ --- """
519
+ """ --- """
520
+ """ --- """
521
+ """ --- """
522
+ """ --- """
523
+ """ --- """
524
+ """ --- """
525
+ """ --- """""" --- """
526
+ """ --- """
527
+ """ --- """
528
+ """ --- """
529
+ """ --- """
530
+ """ --- """
531
+ """ --- """
532
+ """ --- """
533
+ """ --- """
534
+ """ --- """
535
+ """ --- """
536
+ """ --- """
537
+ """ --- """
538
+ """ --- """
539
+ """ --- """
540
+ """ --- """
541
+ """ --- """
542
+ """ --- """
543
+ """ --- """
544
+ """ --- """
545
+ """ --- """
546
+ """ --- """
547
+ """ --- """
548
+ """ --- """
549
+ """ --- """
550
+ """ --- """
551
+ """ --- """
552
+ """ --- """
553
+ """ --- """
554
+ """ --- """
555
+ """ --- """
556
+ """ --- """
557
+ """ --- """
558
+ """ --- """
559
+ """ --- """
560
+ """ --- """
561
+ """ --- """
562
+ """ --- """
563
+ """ --- """
564
+ """ --- """
565
+ """ --- """
566
+ """ --- """
567
+ """ --- """
568
+ """ --- """
569
+ """ --- """
570
+ """ --- """
571
+ """ --- """
572
+ """ --- """
573
+ """ --- """
574
+ """ --- """
575
+ """ --- """
576
+ """ --- """
577
+ """ --- """
578
+ """ --- """
579
+ """ --- """
580
+ """ --- """
581
+ """ --- """
582
+ """ --- """
583
+ """ --- """
584
+ """ --- """
585
+ """ --- """
586
+ """ --- """
587
+ """ --- """
588
+ """ --- """
589
+ """ --- """
590
+ """ --- """
591
+ """ --- """
592
+ """ --- """
593
+ """ --- """
594
+ """ --- """
595
+ """ --- """
596
+ """ --- """
597
+ """ --- """
598
+ """ --- """
599
+ """ --- """
600
+ """ --- """
601
+ """ --- """
602
+ """ --- """
603
+ """ --- """
604
+ """ --- """
605
+ """ --- """
606
+ """ --- """
607
+ """ --- """
608
+ """ --- """
609
+ """ --- """
610
+ """ --- """
611
+ """ --- """
612
+ """ --- """
613
+ """ --- """
614
+ """ --- """
615
+ """ --- """
616
+ """ --- """
617
+ """ --- """
618
+ """ --- """
619
+ """ --- """
620
+ """ --- """
621
+ """ --- """
622
+ """ --- """
623
+ """ --- """
624
+ """ --- """
625
+ """ --- """
626
+ """ --- """
627
+ """ --- """
628
+ """ --- """
629
+ """ --- """
630
+ """ --- """
631
+ """ --- """
632
+ """ --- """
633
+ """ --- """
634
+ """ --- """
635
+ """ --- """
636
+ """ --- """
637
+ """ --- """
638
+ """ --- """
639
+ """ --- """
640
+ """ --- """
641
+ """ --- """
642
+ """ --- """
643
+ """ --- """
644
+ """ --- """
645
+ """ --- """
646
+ """ --- """
647
+ """ --- """
648
+ """ --- """
649
+ """ --- """
650
+ """ --- """
651
+ """ --- """
652
+ """ --- """
653
+ """ --- """
654
+ """ --- """
655
+ """ --- """
656
+ """ --- """
657
+ """ --- """
658
+ """ --- """
659
+ """ --- """
660
+ """ --- """
661
+ """ --- """
662
+ """ --- """
663
+ """ --- """
664
+ """ --- """
665
+ """ --- """
666
+ """ --- """
667
+ """ --- """
668
+ """ --- """
669
+ """ --- """
670
+ """ --- """
671
+ """ --- """
672
+ """ --- """
673
+ """ --- """
674
+ """ --- """
675
+ """ --- """
676
+ """ --- """
677
+ """ --- """
678
+ """ --- """
679
+ """ --- """
680
+ """ --- """
681
+ """ --- """
682
+ """ --- """
683
+ """ --- """
684
+ """ --- """
685
+ """ --- """
686
+ """ --- """
687
+ """ --- """
688
+ """ --- """
689
+ """ --- """
690
+ """ --- """
691
+ """ --- """
692
+ """ --- """
693
+ """ --- """
694
+ """ --- """
695
+ """ --- """
696
+ """ --- """
697
+ """ --- """
698
+ """ --- """
699
+ """ --- """
700
+ """ --- """
701
+ """ --- """
702
+ """ --- """
703
+ """ --- """
704
+ """ --- """
705
+ """ --- """
706
+ """ --- """
707
+ """ --- """
708
+ """ --- """
709
+ """ --- """
710
+ """ --- """
711
+ """ --- """
712
+ """ --- """
713
+ """ --- """
714
+ """ --- """
715
+ """ --- """
716
+ """ --- """
717
+ """ --- """
718
+ """ --- """
719
+ """ --- """
720
+ """ --- """
721
+ """ --- """
722
+ """ --- """
723
+ """ --- """
724
+ """ --- """
725
+ """ --- """
726
+ """ --- """
727
+ """ --- """
728
+ """ --- """
729
+ """ --- """
730
+ """ --- """
731
+ """ --- """
732
+ """ --- """
733
+ """ --- """
734
+ """ --- """
735
+ """ --- """
736
+ """ --- """
737
+ """ --- """
738
+ """ --- """
739
+ """ --- """
740
+ """ --- """
741
+ """ --- """
742
+ """ --- """
743
+ """ --- """
744
+ """ --- """
745
+ """ --- """
746
+ """ --- """
747
+ """ --- """
748
+ """ --- """
749
+ """ --- """
750
+ """ --- """
751
+ """ --- """
752
+ """ --- """
753
+ """ --- """
754
+ """ --- """
755
+ """ --- """
756
+ """ --- """
757
+ """ --- """
758
+ """ --- """
759
+ """ --- """
760
+ """ --- """
761
+ """ --- """
762
+ """ --- """
763
+ """ --- """
764
+ """ --- """
765
+ """ --- """
766
+ """ --- """
767
+ """ --- """
768
+ """ --- """
769
+ """ --- """
770
+ """ --- """
771
+ """ --- """
772
+ """ --- """
773
+ """ --- """
774
+ """ --- """
775
+ """ --- """
776
+ """ --- """
777
+ """ --- """
778
+ """ --- """
779
+ """ --- """
780
+ """ --- """
781
+ """ --- """
782
+ """ --- """
783
+ """ --- """
784
+ """ --- """
785
+ """ --- """
786
+ """ --- """
787
+ """ --- """
788
+ """ --- """
789
+ """ --- """
790
+ """ --- """
791
+ """ --- """
792
+ """ --- """
793
+ """ --- """
794
+ """ --- """
795
+ """ --- """
796
+ """ --- """
797
+ """ --- """
798
+ """ --- """
799
+ """ --- """
800
+ """ --- """
801
+ """ --- """
802
+ """ --- """
803
+ """ --- """
804
+ """ --- """
805
+ """ --- """
806
+ """ --- """
807
+ """ --- """
808
+ """ --- """
809
+ """ --- """
810
+ """ --- """
811
+ """ --- """
812
+ """ --- """
813
+ """ --- """
814
+ """ --- """
815
+ """ --- """
816
+ """ --- """
817
+ """ --- """
818
+ """ --- """
819
+ """ --- """
820
+ """ --- """
821
+ """ --- """
822
+ """ --- """
823
+ """ --- """
824
+ """ --- """
825
+ """ --- """
826
+ """ --- """
827
+ """ --- """
828
+ """ --- """
829
+ """ --- """
830
+ """ --- """
831
+ """ --- """
832
+ """ --- """
833
+ """ --- """
834
+ """ --- """
835
+ """ --- """
836
+ """ --- """
837
+ """ --- """
838
+ """ --- """
839
+ """ --- """
840
+ """ --- """
841
+ """ --- """
842
+ """ --- """
843
+ """ --- """
844
+ """ --- """
845
+ """ --- """
846
+ """ --- """
847
+ """ --- """
848
+ """ --- """
849
+ """ --- """
850
+ """ --- """
851
+ """ --- """
852
+ """ --- """
853
+ """ --- """
854
+ """ --- """
855
+ """ --- """
856
+ """ --- """
857
+ """ --- """
858
+ """ --- """
859
+ """ --- """
860
+ """ --- """
861
+ """ --- """
862
+ """ --- """
863
+ """ --- """
864
+ """ --- """
865
+ """ --- """
866
+ """ --- """
867
+ """ --- """
868
+ """ --- """
869
+ """ --- """
870
+ """ --- """
871
+ """ --- """
872
+ """ --- """
873
+ """ --- """
874
+ """ --- """
875
+ """ --- """
876
+ """ --- """
877
+ """ --- """
878
+ """ --- """
879
+ """ --- """
880
+ """ --- """
881
+ """ --- """
882
+ """ --- """
883
+ """ --- """
884
+ """ --- """
885
+ """ --- """
886
+ """ --- """
887
+ """ --- """
888
+ """ --- """
889
+ """ --- """
890
+ """ --- """
891
+ """ --- """
892
+ """ --- """
893
+ """ --- """
894
+ """ --- """
895
+ """ --- """
896
+ """ --- """
897
+ """ --- """
898
+ """ --- """
899
+ """ --- """
900
+ """ --- """
901
+ """ --- """
902
+ """ --- """
903
+ """ --- """
904
+ """ --- """
905
+ """ --- """
906
+ """ --- """
907
+ """ --- """
908
+ """ --- """
909
+ """ --- """
910
+ """ --- """
911
+ """ --- """
912
+ """ --- """
913
+ """ --- """
914
+ """ --- """
915
+ """ --- """
916
+ """ --- """
917
+ """ --- """
918
+ """ --- """
919
+ """ --- """
920
+ """ --- """
921
+ """ --- """
922
+ """ --- """
923
+ """ --- """
924
+ """ --- """
925
+ """ --- """
926
+ """ --- """
927
+ """ --- """
928
+ """ --- """
929
+ """ --- """
930
+ """ --- """
931
+ """ --- """
932
+ """ --- """
933
+ """ --- """
934
+ """ --- """
935
+ """ --- """
936
+ """ --- """
937
+ """ --- """
938
+ """ --- """
939
+ """ --- """
940
+ """ --- """
941
+ """ --- """
942
+ """ --- """
943
+ """ --- """
944
+ """ --- """
945
+ """ --- """
946
+ """ --- """
947
+ """ --- """
948
+ """ --- """
949
+ """ --- """
950
+ """ --- """
951
+ """ --- """
952
+ """ --- """
953
+ """ --- """
954
+ """ --- """
955
+ """ --- """
956
+ """ --- """
957
+ """ --- """
958
+ """ --- """
959
+ """ --- """
960
+ """ --- """
961
+ """ --- """
962
+ """ --- """
963
+ """ --- """
964
+ """ --- """
965
+ """ --- """
966
+ """ --- """
967
+ """ --- """
968
+ """ --- """
969
+ """ --- """
970
+ """ --- """
971
+ """ --- """
972
+ """ --- """
973
+ """ --- """
974
+ """ --- """
975
+ """ --- """
976
+ """ --- """
977
+ """ --- """
978
+ """ --- """
979
+ """ --- """
980
+ """ --- """
981
+ """ --- """
982
+ """ --- """
983
+ """ --- """
984
+ """ --- """
985
+ """ --- """
986
+ """ --- """
987
+ """ --- """
988
+ """ --- """
989
+ """ --- """
990
+ """ --- """
991
+ """ --- """
992
+ """ --- """
993
+ """ --- """
994
+ """ --- """
995
+ """ --- """
996
+ """ --- """
997
+ """ --- """
998
+ """ --- """
999
+ """ --- """
1000
+ """ --- """
postman/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup
2
+ from Cython.Build import cythonize
3
+
4
+ setup(
5
+ ext_modules = cythonize(
6
+ "json.pyx",
7
+ compiler_directives = {'language_level': "3"}
8
+ ),
9
+ )
restful/utilities.py DELETED
@@ -1,61 +0,0 @@
1
- import os
2
- from joblib import load
3
- from numpy import append, expand_dims
4
- from pandas import read_json, to_datetime, Timedelta
5
-
6
- from tensorflow.keras.models import load_model
7
-
8
-
9
- class Utilities:
10
- def __init__(self) -> None:
11
- self.model_path = './models'
12
- self.posttrained_path = './posttrained'
13
- self.scaler_path = './pickles'
14
-
15
- async def cryptocurrency_prediction_utils(self,
16
- days: int, sequence_length: int, model_name: str) -> tuple:
17
- model_path = os.path.join(self.model_path, f'{model_name}.keras')
18
- model = load_model(model_path)
19
-
20
- dataframe_path = os.path.join(self.posttrained_path, f'{model_name}-posttrained.json')
21
- dataframe = read_json(dataframe_path)
22
- dataframe.set_index('Date', inplace = True)
23
-
24
- minmax_scaler = load(os.path.join(self.scaler_path, f'{model_name}_minmax_scaler.pickle'))
25
- standard_scaler = load(os.path.join(self.scaler_path, f'{model_name}_standard_scaler.pickle'))
26
-
27
- lst_seq = dataframe[-sequence_length:].values
28
- lst_seq = expand_dims(lst_seq, axis = 0)
29
-
30
- # Predicted
31
- predicted_prices = {}
32
- last_date = to_datetime(dataframe.index[-1])
33
-
34
- for _ in range(days):
35
- predicted_price = model.predict(lst_seq)
36
- last_date = last_date + Timedelta(days = 1)
37
-
38
- predicted_prices[last_date] = minmax_scaler.inverse_transform(predicted_price)
39
- predicted_prices[last_date] = standard_scaler.inverse_transform(predicted_prices[last_date])
40
-
41
- lst_seq = append(lst_seq[:, 1:, :], [predicted_price], axis = 1)
42
-
43
- predictions = [
44
- {'date': date.strftime('%Y-%m-%d'), 'price': float(price)} \
45
- for date, price in predicted_prices.items()
46
- ]
47
-
48
- # Actual
49
- df_date = dataframe.index[-sequence_length:].values
50
- df_date = [to_datetime(date) for date in df_date]
51
-
52
- dataframe[['Close']] = minmax_scaler.inverse_transform(dataframe)
53
- dataframe[['Close']] = standard_scaler.inverse_transform(dataframe)
54
- df_close = dataframe.iloc[-sequence_length:]['Close'].values
55
-
56
- actuals = [
57
- {'date': date.strftime('%Y-%m-%d'), 'price': close} \
58
- for date, close in zip(df_date, df_close)
59
- ]
60
-
61
- return actuals, predictions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training.py DELETED
@@ -1,244 +0,0 @@
1
- import os
2
- import json
3
- import joblib
4
- import argparse
5
- import numpy as np
6
- import pandas as pd
7
-
8
- from sklearn.preprocessing import StandardScaler, MinMaxScaler
9
-
10
- from tensorflow.keras.models import Sequential
11
- from tensorflow.keras.layers import GRU, LSTM, Dense, Dropout
12
- from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
13
-
14
-
15
-
16
- from warnings import filterwarnings
17
- filterwarnings('ignore')
18
-
19
- class DataProcessor:
20
- def __init__(self, datasets_path):
21
- self.datasets_path = datasets_path
22
- self.datasets = self._get_datasets()
23
-
24
- def _get_datasets(self):
25
- return sorted([
26
- item for item in os.listdir(self.datasets_path)
27
- if os.path.isfile(os.path.join(self.datasets_path, item)) and item.endswith('.csv')
28
- ])
29
-
30
- @staticmethod
31
- def create_sequences(df, sequence_length):
32
- labels, sequences = [], []
33
- for i in range(len(df) - sequence_length):
34
- seq = df.iloc[i:i + sequence_length].values
35
- label = df.iloc[i + sequence_length].values[0]
36
- sequences.append(seq)
37
- labels.append(label)
38
- return np.array(sequences), np.array(labels)
39
-
40
- @staticmethod
41
- def preprocess_data(dataframe):
42
- for col in dataframe.columns:
43
- if dataframe[col].isnull().any():
44
- if dataframe[col].dtype == 'object':
45
- dataframe[col].fillna(dataframe[col].mode()[0], inplace = True)
46
- else:
47
- dataframe[col].fillna(dataframe[col].mean(), inplace = True)
48
- return dataframe
49
-
50
- @staticmethod
51
- def scale_data(dataframe, scaler_cls):
52
- scaler = scaler_cls()
53
- dataframe['Close'] = scaler.fit_transform(dataframe[['Close']])
54
- return scaler, dataframe
55
-
56
-
57
- class ModelBuilder:
58
- """
59
- GRU (Gated Recurrent Units) Model
60
- """
61
- @staticmethod
62
- def gru_model(input_shape):
63
- model = Sequential([
64
- GRU(50, return_sequences = True, input_shape = input_shape),
65
- Dropout(0.2),
66
-
67
- GRU(50, return_sequences = True),
68
- Dropout(0.2),
69
-
70
- GRU(50, return_sequences = True),
71
- Dropout(0.2),
72
-
73
- GRU(50, return_sequences = False),
74
- Dropout(0.2),
75
-
76
- Dense(units = 1)
77
- ])
78
- model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
79
- return model
80
-
81
-
82
- """
83
- LSTM (Long Short-Term Memory) Model
84
- """
85
- @staticmethod
86
- def lstm_model(input_shape):
87
- model = Sequential([
88
- LSTM(50, return_sequences = True, input_shape = input_shape),
89
- Dropout(0.2),
90
-
91
- LSTM(50, return_sequences = True),
92
- Dropout(0.2),
93
-
94
- LSTM(50, return_sequences = True),
95
- Dropout(0.2),
96
-
97
- LSTM(50, return_sequences = False),
98
- Dropout(0.2),
99
-
100
- Dense(units = 1)
101
- ])
102
- model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
103
- return model
104
-
105
-
106
- """
107
- LSTM (Long Short-Term Memory) and
108
- GRU (Gated Recurrent Units) Model
109
- """
110
- @staticmethod
111
- def lstm_gru_model(input_shape):
112
- model = Sequential([
113
- LSTM(50, return_sequences = True, input_shape = input_shape),
114
- Dropout(0.2),
115
-
116
- GRU(50, return_sequences = True),
117
- Dropout(0.2),
118
-
119
- LSTM(50, return_sequences = True),
120
- Dropout(0.2),
121
-
122
- GRU(50, return_sequences = False),
123
- Dropout(0.2),
124
-
125
- Dense(units = 1)
126
- ])
127
- model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
128
- return model
129
-
130
-
131
- class Trainer:
132
- def __init__(self, model, model_file, sequence_length, epochs, batch_size):
133
- self.model = model
134
- self.model_file = model_file
135
- self.sequence_length = sequence_length
136
- self.epochs = epochs
137
- self.batch_size = batch_size
138
-
139
- def train(self, X_train, y_train, X_test, y_test):
140
- early_stopping = EarlyStopping(monitor = 'val_loss', patience = 5, mode = 'min')
141
-
142
- model_checkpoint = ModelCheckpoint(
143
- filepath = self.model_file,
144
- save_best_only = True,
145
- monitor = 'val_loss',
146
- mode = 'min'
147
- )
148
-
149
- history = self.model.fit(
150
- X_train, y_train,
151
- epochs = self.epochs,
152
- batch_size = self.batch_size,
153
- validation_data = (X_test, y_test),
154
- callbacks = [early_stopping, model_checkpoint]
155
- )
156
-
157
- return history
158
-
159
-
160
- class PostProcessor:
161
- @staticmethod
162
- def inverse_transform(scaler, data):
163
- return scaler.inverse_transform(data)
164
-
165
- @staticmethod
166
- def save_json(filename, data):
167
- with open(filename, 'w') as f:
168
- json.dump(data, f)
169
-
170
- def main(algorithm: str, sequence_length: int, epochs: int, batch_size: int):
171
- datasets_path = './datasets'
172
- models_path = './models'
173
- posttrained = './posttrained'
174
- pickle_file = './pickles'
175
-
176
- data_processor = DataProcessor(datasets_path)
177
-
178
- for dataset in data_processor.datasets:
179
- print(f"[TRAINING] {dataset.replace('.csv', '')} ")
180
-
181
- dataframe = pd.read_csv(os.path.join(datasets_path, dataset), index_col='Date')[['Close']]
182
- model_file = os.path.join(models_path, f"{dataset.replace('.csv', '')}.keras")
183
-
184
- # dataframe = data_processor.preprocess_data(dataframe)
185
- dataframe.dropna(inplace = True)
186
- standard_scaler, dataframe = data_processor.scale_data(dataframe, StandardScaler)
187
- minmax_scaler, dataframe = data_processor.scale_data(dataframe, MinMaxScaler)
188
-
189
- sequences, labels = data_processor.create_sequences(dataframe, sequence_length)
190
- input_shape = (sequences.shape[1], sequences.shape[2])
191
-
192
- if algorithm == "GRU":
193
- model = ModelBuilder.gru_model(input_shape)
194
-
195
- elif algorithm == "LSTM":
196
- model = ModelBuilder.lstm_model(input_shape)
197
-
198
- elif algorithm == "LSTM_GRU":
199
- model = ModelBuilder.lstm_gru_model(input_shape)
200
-
201
- else: model = ModelBuilder.lstm_model(input_shape)
202
-
203
- train_size = int(len(sequences) * 0.8)
204
- X_train, X_test = sequences[:train_size], sequences[train_size:]
205
- y_train, y_test = labels[:train_size], labels[train_size:]
206
-
207
- trainer = Trainer(model, model_file, sequence_length, epochs, batch_size)
208
- trainer.train(X_train, y_train, X_test, y_test)
209
-
210
- dataframe_json = {'Date': dataframe.index.tolist(), 'Close': dataframe['Close'].tolist()}
211
-
212
- PostProcessor.save_json(
213
- os.path.join(posttrained, f'{dataset.replace(".csv", "")}-posttrained.json'),
214
- dataframe_json
215
- )
216
-
217
- joblib.dump(minmax_scaler, os.path.join(pickle_file, f'{dataset.replace(".csv", "")}_minmax_scaler.pickle'))
218
- joblib.dump(standard_scaler, os.path.join(pickle_file, f'{dataset.replace(".csv", "")}_standard_scaler.pickle'))
219
-
220
- model.load_weights(model_file)
221
- model.save(model_file)
222
-
223
- print("\n\n")
224
-
225
-
226
- if __name__ == "__main__":
227
- parser = argparse.ArgumentParser(description = "Tebakaja Model Trainer")
228
-
229
- parser.add_argument('-a', '--algorithm', type = str, required = True,
230
- help = 'select the algorithm to be trained (LSTM, GRU, LSTM_GRU)')
231
-
232
- parser.add_argument('-e', '--epochs', type = int, required = True, help = 'epochs')
233
- parser.add_argument('-b', '--batchs', type = int, required = True, help = 'batch length')
234
- parser.add_argument('-s', '--sequences', type = int, required = True, help = 'sequences length')
235
-
236
- args = parser.parse_args()
237
-
238
- main(
239
- epochs = args.epochs,
240
- batch_size = args.batchs,
241
- algorithm = args.algorithm,
242
- sequence_length = args.sequences
243
- )
244
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training/build/lib.linux-x86_64-3.10/data_processor.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (426 kB). View file
 
training/build/lib.linux-x86_64-3.10/main.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (493 kB). View file
 
training/build/lib.linux-x86_64-3.10/model_builder.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (395 kB). View file
 
training/build/lib.linux-x86_64-3.10/post_processor.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (319 kB). View file
 
training/build/lib.linux-x86_64-3.10/trainer.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (296 kB). View file
 
training/build/temp.linux-x86_64-3.10/data_processor.o ADDED
Binary file (765 kB). View file
 
training/build/temp.linux-x86_64-3.10/main.o ADDED
Binary file (890 kB). View file
 
training/build/temp.linux-x86_64-3.10/model_builder.o ADDED
Binary file (699 kB). View file
 
training/build/temp.linux-x86_64-3.10/post_processor.o ADDED
Binary file (572 kB). View file
 
training/build/temp.linux-x86_64-3.10/trainer.o ADDED
Binary file (523 kB). View file
 
training/data_processor.c ADDED
The diff for this file is too large to render. See raw diff
 
training/data_processor.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (426 kB). View file
 
training/data_processor.pyx ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+
4
+ from warnings import filterwarnings
5
+ filterwarnings('ignore')
6
+
7
+
8
+ """ Get Datasets """
9
+ async def get_datasets(str datasets_path):
10
+ cdef list items = os.listdir(datasets_path)
11
+ cdef list csv_files = []
12
+ cdef str item
13
+
14
+ for item in items:
15
+ if os.path.isfile(os.path.join(datasets_path, item)) and item.endswith('.csv'):
16
+ csv_files.append(item)
17
+
18
+ return sorted(csv_files)
19
+
20
+
21
+ """ Create Sequences """
22
+ async def create_sequences(df, int sequence_length):
23
+ cdef list labels = []
24
+ cdef list sequences = []
25
+ cdef int i
26
+
27
+ for i in range(len(df) - sequence_length):
28
+ seq = df.iloc[i:i + sequence_length].values
29
+ label = df.iloc[i + sequence_length].values[0]
30
+ sequences.append(seq)
31
+ labels.append(label)
32
+
33
+ return np.array(sequences), np.array(labels)
34
+
35
+
36
+ """ Pre-Process Data """
37
+ async def preprocess_data(dataframe):
38
+ cdef str col
39
+
40
+ for col in dataframe.columns:
41
+ if dataframe[col].isnull().any():
42
+ if dataframe[col].dtype == 'object':
43
+ dataframe[col].fillna(dataframe[col].mode()[0], inplace=True)
44
+ else:
45
+ dataframe[col].fillna(dataframe[col].mean(), inplace=True)
46
+
47
+ return dataframe
48
+
49
+
50
+ """ Scale Data """
51
+ async def scale_data(dataframe, scaler_cls):
52
+ scaler = scaler_cls()
53
+ dataframe['Close'] = scaler.fit_transform(dataframe[['Close']])
54
+ return scaler, dataframe
55
+
training/main.c ADDED
The diff for this file is too large to render. See raw diff
 
training/main.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (493 kB). View file
 
training/main.pyx ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import joblib
3
+ import argparse
4
+ import pandas as pd
5
+ from sklearn.preprocessing import StandardScaler, MinMaxScaler
6
+
7
+
8
+ from training.trainer import train
9
+ from training.post_processor import save_json, inverse_transform
10
+ from training.data_processor import (
11
+ scale_data,
12
+ get_datasets,
13
+ preprocess_data,
14
+ create_sequences
15
+ )
16
+
17
+ from training.model_builder import (
18
+ gru_model,
19
+ lstm_model,
20
+ lstm_gru_model
21
+ )
22
+
23
+
24
+ from warnings import filterwarnings
25
+ filterwarnings('ignore')
26
+
27
+ async def main(algorithm: str, sequence_length: int, epochs: int, batch_size: int):
28
+ datasets_path = './datasets'
29
+ models_path = './models'
30
+ posttrained = './posttrained'
31
+ pickle_file = './pickles'
32
+
33
+
34
+ for dataset in await get_datasets(datasets_path):
35
+ print(f"[TRAINING] {dataset.replace('.csv', '')} ")
36
+
37
+ dataframe = pd.read_csv(os.path.join(datasets_path, dataset), index_col='Date')[['Close']]
38
+ model_file = os.path.join(models_path, f"{dataset.replace('.csv', '')}.keras")
39
+
40
+ # dataframe = preprocess_data(dataframe)
41
+ dataframe.dropna(inplace = True)
42
+ standard_scaler, dataframe = await scale_data(dataframe, StandardScaler)
43
+ minmax_scaler, dataframe = await scale_data(dataframe, MinMaxScaler)
44
+
45
+ sequences, labels = await create_sequences(dataframe, sequence_length)
46
+ input_shape = (sequences.shape[1], sequences.shape[2])
47
+
48
+ if algorithm == "GRU":
49
+ model = await gru_model(input_shape)
50
+
51
+ elif algorithm == "LSTM":
52
+ model = await lstm_model(input_shape)
53
+
54
+ elif algorithm == "LSTM_GRU":
55
+ model = await lstm_gru_model(input_shape)
56
+
57
+ else: model = await lstm_model(input_shape)
58
+
59
+ train_size = int(len(sequences) * 0.8)
60
+ X_train, X_test = sequences[:train_size], sequences[train_size:]
61
+ y_train, y_test = labels[:train_size], labels[train_size:]
62
+
63
+ await train({
64
+ 'model': model,
65
+ 'model_file': model_file,
66
+ 'sequence_length': sequence_length,
67
+ 'epochs': epochs,
68
+ 'batch_size': batch_size
69
+ }, X_train, y_train, X_test, y_test)
70
+
71
+ dataframe_json = {'Date': dataframe.index.tolist(), 'Close': dataframe['Close'].tolist()}
72
+
73
+ await save_json(
74
+ os.path.join(posttrained, f'{dataset.replace(".csv", "")}-posttrained.json'),
75
+ dataframe_json
76
+ )
77
+
78
+ joblib.dump(minmax_scaler, os.path.join(pickle_file, f'{dataset.replace(".csv", "")}_minmax_scaler.pickle'))
79
+ joblib.dump(standard_scaler, os.path.join(pickle_file, f'{dataset.replace(".csv", "")}_standard_scaler.pickle'))
80
+
81
+ model.load_weights(model_file)
82
+ model.save(model_file)
83
+
84
+ print("\n\n")
85
+
training/model_builder.c ADDED
The diff for this file is too large to render. See raw diff
 
training/model_builder.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (395 kB). View file
 
training/model_builder.pyx ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow.keras.models import Sequential
2
+ from tensorflow.keras.layers import GRU, LSTM, Dense, Dropout
3
+
4
+ from warnings import filterwarnings
5
+ filterwarnings('ignore')
6
+
7
+
8
+ """ GRU (Gated Recurrent Units) Model """
9
+ async def gru_model(input_shape):
10
+ cdef object model = Sequential([
11
+ GRU(50, return_sequences = True, input_shape = input_shape),
12
+ Dropout(0.2),
13
+
14
+ GRU(50, return_sequences = True),
15
+ Dropout(0.2),
16
+
17
+ GRU(50, return_sequences = True),
18
+ Dropout(0.2),
19
+
20
+ GRU(50, return_sequences = False),
21
+ Dropout(0.2),
22
+
23
+ Dense(units = 1)
24
+ ])
25
+
26
+ model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
27
+ return model
28
+
29
+
30
+ """ LSTM (Long Short-Term Memory) Model """
31
+ async def lstm_model(input_shape):
32
+ cdef object model = Sequential([
33
+ LSTM(50, return_sequences = True, input_shape = input_shape),
34
+ Dropout(0.2),
35
+
36
+ LSTM(50, return_sequences = True),
37
+ Dropout(0.2),
38
+
39
+ LSTM(50, return_sequences = True),
40
+ Dropout(0.2),
41
+
42
+ LSTM(50, return_sequences = False),
43
+ Dropout(0.2),
44
+
45
+ Dense(units = 1)
46
+ ])
47
+
48
+ model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
49
+ return model
50
+
51
+
52
+ """
53
+ LSTM (Long Short-Term Memory) and
54
+ GRU (Gated Recurrent Units) Model
55
+ """
56
+ async def lstm_gru_model(input_shape):
57
+ cdef object model = Sequential([
58
+ LSTM(50, return_sequences = True, input_shape = input_shape),
59
+ Dropout(0.2),
60
+
61
+ GRU(50, return_sequences = True),
62
+ Dropout(0.2),
63
+
64
+ LSTM(50, return_sequences = True),
65
+ Dropout(0.2),
66
+
67
+ GRU(50, return_sequences = False),
68
+ Dropout(0.2),
69
+
70
+ Dense(units = 1)
71
+ ])
72
+
73
+ model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
74
+ return model
training/post_processor.c ADDED
The diff for this file is too large to render. See raw diff
 
training/post_processor.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (319 kB). View file
 
training/post_processor.pyx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from sklearn.preprocessing import MinMaxScaler
3
+
4
+ from warnings import filterwarnings
5
+ filterwarnings('ignore')
6
+
7
+
8
+ """ Inverse Transform """
9
+ async def inverse_transform(object scaler, data):
10
+ return scaler.inverse_transform(data)
11
+
12
+
13
+ """ save json """
14
+ async def save_json(str filename, data):
15
+ with open(filename, 'w') as f:
16
+ json.dump(data, f)
17
+
training/setup.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from setuptools import setup
3
+ from Cython.Build import cythonize
4
+
5
+ setup(
6
+ ext_modules = cythonize([
7
+ # Model Builder
8
+ 'model_builder.pyx',
9
+
10
+ # Data Processor
11
+ 'data_processor.pyx',
12
+
13
+ # Post Processor
14
+ 'post_processor.pyx',
15
+
16
+ # Trainer
17
+ 'trainer.pyx',
18
+
19
+ # Main
20
+ 'main.pyx'
21
+ ]),
22
+
23
+ include_dirs = [ np.get_include() ]
24
+ )
training/trainer.c ADDED
The diff for this file is too large to render. See raw diff
 
training/trainer.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (296 kB). View file
 
training/trainer.pyx ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
2
+
3
+ from warnings import filterwarnings
4
+ filterwarnings('ignore')
5
+
6
+
7
+ """ Trainer """
8
+ async def train(dict configuration, X_train, y_train, X_test, y_test):
9
+ cdef object early_stopping = EarlyStopping(
10
+ monitor = 'val_loss',
11
+ patience = 5,
12
+ mode = 'min'
13
+ )
14
+
15
+ cdef object model_checkpoint = ModelCheckpoint(
16
+ filepath = configuration['model_file'],
17
+ save_best_only = True,
18
+ monitor = 'val_loss',
19
+ mode = 'min'
20
+ )
21
+
22
+ cdef object history = configuration['model'].fit(
23
+ X_train, y_train,
24
+ epochs = configuration['epochs'],
25
+ batch_size = configuration['batch_size'],
26
+ validation_data = (X_test, y_test),
27
+ callbacks = [ early_stopping, model_checkpoint ]
28
+ )
29
+
30
+ return history
31
+
trainingcli.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import argparse
3
+ from training.main import main as training
4
+
5
+
6
+ def main() -> None:
7
+ parser = argparse.ArgumentParser(description = "Tebakaja Model Trainer")
8
+
9
+ parser.add_argument('-a', '--algorithm', type = str, required = True,
10
+ help = 'select the algorithm to be trained (LSTM, GRU, LSTM_GRU)')
11
+
12
+ parser.add_argument('-e', '--epochs', type = int, required = True, help = 'epochs')
13
+ parser.add_argument('-b', '--batchs', type = int, required = True, help = 'batch length')
14
+ parser.add_argument('-s', '--sequences', type = int, required = True, help = 'sequences length')
15
+
16
+ args = parser.parse_args()
17
+ event_loop = asyncio.get_event_loop()
18
+
19
+ event_loop.run_until_complete(
20
+ training(
21
+ epochs = args.epochs,
22
+ batch_size = args.batchs,
23
+ algorithm = args.algorithm,
24
+ sequence_length = args.sequences
25
+ )
26
+ )
27
+
28
+
29
+ if __name__ == "__main__": main()
30
+