import os | |
import numpy as np | |
from warnings import filterwarnings | |
filterwarnings('ignore') | |
""" Get Datasets """ | |
async def get_datasets(str datasets_path): | |
cdef list items = os.listdir(datasets_path) | |
cdef list csv_files = [] | |
cdef str item | |
for item in items: | |
if os.path.isfile(os.path.join(datasets_path, item)) and item.endswith('.csv'): | |
csv_files.append(item) | |
return sorted(csv_files) | |
""" Create Sequences """ | |
async def create_sequences(df, int sequence_length): | |
cdef list labels = [] | |
cdef list sequences = [] | |
cdef int i | |
for i in range(len(df) - sequence_length): | |
seq = df.iloc[i:i + sequence_length].values | |
label = df.iloc[i + sequence_length].values[0] | |
sequences.append(seq) | |
labels.append(label) | |
return np.array(sequences), np.array(labels) | |
""" Pre-Process Data """ | |
async def preprocess_data(dataframe): | |
cdef str col | |
for col in dataframe.columns: | |
if dataframe[col].isnull().any(): | |
if dataframe[col].dtype == 'object': | |
dataframe[col].fillna(dataframe[col].mode()[0], inplace=True) | |
else: | |
dataframe[col].fillna(dataframe[col].mean(), inplace=True) | |
return dataframe | |
""" Scale Data """ | |
async def scale_data(dataframe, scaler_cls): | |
scaler = scaler_cls() | |
dataframe['Close'] = scaler.fit_transform(dataframe[['Close']]) | |
return scaler, dataframe | |